K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Ta giả sử 3 số đều =2

=>\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(Đúng)

=>đpcm 

P/s : nhanh gọn lẹ :))

10 tháng 3 2020

Đặt \(A=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

Không mất tính tổng quát giả sử:

\(\frac{1}{x+1}< \frac{1}{y+1}< \frac{1}{z+1}\)

Ta có

+) \(A>\frac{3}{1+x}\Leftrightarrow1>\frac{3}{1+x}\)

\(\Leftrightarrow\frac{1}{3}>\frac{1}{x+1}\Leftrightarrow x+1>3\)

<=> x>2(1)

+) \(A< \frac{3}{1+z}\Leftrightarrow1< \frac{3}{1+z}\Leftrightarrow\frac{1}{3}< \frac{1}{1+z}\Leftrightarrow1+z< 3\Leftrightarrow x< 2\)(2)
Từ (1) (2) => ĐPCM

29 tháng 10 2017

{xyz=1

1x+1y+1z<x+y+z

⇔{xyz=1

xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z

⇔{xyz=1

xyz(1x+1y+1z)<x+y+z
⇔{xyz=1

xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0

⇔{xyz=1

xy+yz+zx<x+y+z

⇔{xyz=1

x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0

⇒(x−1)(y−1)(z−1)>0

(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0

⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM 

21 tháng 10 2017

Vào google tìm nhé !

30 tháng 8 2017

Đầu tiên CM BDT :

\(1+x^3+y^3\ge xy"x+y+z"\)

\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"

\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)

\(\Leftrightarrow"x+y""x-y"^2\ge0\)

BDT luôn đúng theo gt 

\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)

\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

Tương tự

\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)

\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

AD BDT Cauchy cho các số > 0

\(x+y+z\ge3\)\(\sqrt[3]{xyz}=3\)

\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)

\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\) 

\(\Rightarrow VT\ge VP\)

\(\Rightarrow DPCM\)

Vậy Dấu \(= khi x=y=z=1\)

P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

1 tháng 2 2018

1/x + 1/y + 1/z = 1/3 = 1/x+y+z

<=> xy+yz+zx/xyz = 1/x+y+z

<=> (xy+yz+zx).(x+y+z) = xyz

<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz = xyz

<=> x^2y+xy^2+y^2z+zy^2+z^2x+zx^2+2xyz = 0

<=> (x+y).(y+z).(z+x) = 0

<=> x+y=0 hoặc y+z=0 hoặc z+x = 0

<=> z=3 hoặc x=3 hoặc y=3

=> ĐPCM

Tk mk nha