Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge x+y+\frac{3}{x+y}\)
\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)
Tại \(x=y=\frac{2}{3}\)
Với mọi 0 < x < 1 ta có:
\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Kết luận:...
ĐK ; \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
a, \(Q=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x-8\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-7\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-7}{\sqrt{x}+1}\)
b. \(Q< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-7}{\sqrt{x}+1}-\frac{1}{2}< 0\Rightarrow\frac{\sqrt{x}-15}{2\left(\sqrt{x}+1\right)}< 0\Rightarrow\sqrt{x}-15< 0\)
\(\Rightarrow0\le x< 225\)và \(x\ne4\)
c. \(Q=\frac{\sqrt{x}-7}{\sqrt{x}+1}=1-\frac{8}{\sqrt{x}+1}\)
Ta thấy \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{-8}{\sqrt{x}+1}\ge-8\Rightarrow1-\frac{8}{\sqrt{x}+1}\ge-7\)
\(\Rightarrow Q\ge-7\)
Vậy \(MinQ=-7\). Dấu bằng xảy ra \(\Rightarrow x=0\)
bài này lp 8 cx làm dc , CTV mà ngu lonee :)
nhờ vào năng lực rinegan của chúa pain , ta có thể dễ dàng nhìn ra ......
\(1-x=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right).\) dkxd , x dương và x khác 1
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)\)
\(P=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left(\frac{\sqrt{x}-x-\sqrt{x}+4}{1-x}\right)\)
\(p=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(x-4\right)}\)
\(P=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{1-\sqrt{x}}{-\sqrt{x}-2}\)
B) dkxd có x luôn dương
vậy ta suy ra \(-\left(\sqrt{x}+2\right)< 0\) " âm"
vậy để \(\frac{1-\sqrt{x}}{-\left(\sqrt{x}+2\right)}< 0\)
thì \(1-\sqrt{x}>0\) " vì số dương chia cho số âm luôn bé hơn 0 "
\(-\sqrt{x}>-1\Leftrightarrow\sqrt{x}< 1\)
để p dương thì ................ 0<x<1
c)
\(\frac{1-\sqrt{x}}{-\sqrt{x}+2}=\frac{2-\sqrt{x}+1}{-\sqrt{x}+2}=1+\frac{1}{-\sqrt{x}+2}\)
vì x dương " dkxd "
suy ra \(\orbr{\begin{cases}\sqrt{x}+2\ge2\\-\sqrt{x}+2\le2\end{cases}}\)
vì " năm ở mẫu "
\(\frac{1}{-\sqrt{x}+2}\ge\frac{1}{2}\)
\(1+\frac{1}{-\sqrt{x}+2}\ge1+\frac{1}{2}=\frac{3}{2}\)
dấu = xảy ra khi x = 0
a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)
\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)
b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)
c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)
a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng
b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)
c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)
do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)
\(=>\frac{1}{P}\ge-\frac{1}{3}\)
dấu = xảy ra khi x=0
zậy ..
\(B\ge\frac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)
\(B_{min}=7+4\sqrt{3}\) khi \(\frac{1-x}{\sqrt{3}}=\frac{x}{2}\Leftrightarrow x=4-2\sqrt{3}\)