K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 6 2020

Lời giải:

Do $x,y,z\in [0;1]$ nên $1+yz; 1+xz; 1+xy\geq 1+xyz$

$\Rightarrow \frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\leq \frac{x+y+z}{1+xyz}$

Ta cần chứng minh: $\frac{x+y+z}{1+xyz}\leq 2$

$\Leftrightarrow x+y+z\leq 2+2xyz(*)$

Thật vậy:

$x,y\in [0;1]\Rightarrow (x-1)(y-1)\geq 0$

$\Leftrightarrow xy+1\geq x+y\Rightarrow xy+z+1\geq x+y+z(1)$
Mà:

$xy+z+1-(2+2xyz)=xy+z-2xyz-1=xy(1-z)-(1-z)-xyz=(xy-1)(1-z)-xyz\leq 0$ do $0\leq x,y,z\leq 1$)

$\Rightarrow xy+z+1\leq 2+2xyz(2)$

Từ $(1);(2)\Rightarrow x+y+z\leq 2+2xyz$

BĐT $(*)$ đc chứng minh nên ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,0)$ và hoán vị

1 tháng 7 2020

Trâu bò nhưng bù lại là đơn giản:

\(VP-VT\equiv f\left(x,y,z\right)=f\left(\frac{a}{a+1},\frac{b}{b+1},\frac{c}{c+1}\right)\ge0\)

Bất đẳng thức cuối quy đồng lên sẽ thấy điều hiển nhiên ;)