Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)
\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a+b+c\le6\)
Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)
\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)
Dấu "=" xảy ra khi \(a=b=c=2\)
sửa đề : \(A=\left(a-b\right)c^3+\left(c-a\right)b^3+\left(b-c\right)a^3\)\(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+b=-c\)
\(A=ac^3-bc^3+b^3c-ab^3+a^3b-a^3c=\left(ac^3-a^3c\right)+\left(b^3c-bc^3\right)+\left(a^3b-ab^3\right)\)
\(=ac\left(c^2-a^2\right)+bc\left(b^2-c^2\right)+ab\left(a^2-b^2\right)\)
\(=ac\left(c-a\right)\left(c+a\right)+bc\left(b-c\right)\left(b+c\right)+ab\left(a-b\right)\left(a+b\right)\)
\(=-abc\left(c-a\right)-abc\left(b-c\right)-abc\left(a-b\right)=-abc\left(c-a+b-c+a-b\right)=-abc\cdot0=0\)
Áp dụng bất đẳng thức : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Có thể chứng minh bằng biến đổi tương đương)
được: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(1)
Thay \(a+b=2-c\)và \(a^2+b^2=2-c^2\)vào (1) được:
\(2\left(2-c^2\right)\ge\left(2-c\right)^2\Leftrightarrow4-2c^2\ge4-4c+c^2\Leftrightarrow3c^2-4c\le0\)
Giải ra được \(0\le c\le\frac{4}{3}\)
Tương tự với a,b ta suy ra được điều phải chứng minh.
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow3\le3a\Rightarrow a\ge1\)
\(\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)
\(A=a^3+\left(b+c\right)^3-3bc\left(b+c\right)\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)
\(\Rightarrow A\le27-27a+9a^2=9+9\left(a^2-3a+2\right)=9+9\left(a-1\right)\left(a-2\right)\le9\)
\(\Rightarrow A_{max}=9\) khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị
Bài này em làm bên olm rồi, lục lại: Link.
Ý tưởng hệt như ad Lâm:v