\(0\le x,y,z\le1.\)CMR:

   \(\frac{1}{x^2+1}+\frac{1}{y^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

NV
18 tháng 11 2019

Chỉ có biến đổi tương đương:

\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)

b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc

18 tháng 11 2019

Phần b là mình đánh nhầm sửa lại là \(\frac{1}{1+xyz}\)

26 tháng 12 2017

Từ (gt) \(\Rightarrow\frac{1}{1+x}=\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\\\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\end{cases}}\)

\(\Rightarrow\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\frac{\left(xyz\right)^2}{\left[\left(1+x\right)\left(1+y\right)\left(1+z\right)\right]^2}}=\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow xyz\le\frac{1}{8}\)

15 tháng 6 2017

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

15 tháng 6 2017

khó quá

NV
17 tháng 11 2019

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

17 tháng 11 2019

Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,

tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@Akai Haruma

giúp e vs ạ! thanks trước

27 tháng 9 2018

\(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Tương tụ co:

\(\hept{\begin{cases}\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\\\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\end{cases}}\)

\(\Rightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow xyz\le\frac{1}{8}\)

8 tháng 9 2020

Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi

Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))

12 tháng 9 2020

Mình cần câu a ạ :<