\(0\le x,y,z\le1\). CMR:

\(\frac{x}{1+y+xz}+\frac{y}{1+z+x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)

\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\) 

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\) 

Tương tự rồi cộng từng vế, ta có:  

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\) 

=> ĐPCM 

9 tháng 6 2017

Vì \(0\le x,y,z\le1\)

\(\Rightarrow xy\le y\)

\(x^2\le1\)

\(\Rightarrow x^2+xy+xz\le xz+y+1\)

\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)

\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)

CMTT : các vế khác cug vậy

cộng các vế vào là đc

20 tháng 1 2018

\(0\le x;y;z\le1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy-x-y+1\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))

\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))

\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))

\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)

3 tháng 10 2019

\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\)

\(\le\frac{1}{2\sqrt{x^2yz}}+\frac{1}{2\sqrt{y^2xz}}+\frac{1}{2\sqrt{z^2xy}}=\frac{\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}}{2\sqrt{xyz}}\)

\(=\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\le\frac{\frac{x+y+x+z+x+y}{2}}{2xyz}=\frac{x+y+z}{2xyz}\)

Dấu '=' xảy ra <=> x=y=z

3 tháng 10 2019

\(\frac{1}{x^2+yz}\le\frac{1}{2\sqrt{x^2yz}}=\frac{\frac{1}{\sqrt{x}}}{2\sqrt{xyz}}=\frac{\sqrt{yz}}{2xyz}\)

Tương tự cộng vế với vế -> \(VT\le\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le VP\)

Dấu '=' xảy ra khi x=y=z

23 tháng 4 2016

Bạn ghi sai đề rồi nhé! Nếu ta lần lượt thay số vào các biến  \(x,y,z\) ở vế trái của bất đẳng thức trên (chẳng hạng như  \(\frac{1}{3}\)) kết hợp với chú ý rằng \(x=y=z\)  (sẽ được chứng minh ở các bước sau này), khi đó kết quả sẽ cho ra khác, tức là  \(\frac{3}{\sqrt{2}}\) (vô lý!). Đó là lý do mình phải 'viết lại' đề cộng với một chút chỉnh sửa hợp lý về phương diện toán học. Hmmm, vất vả vật lộn với bài này quá nya. \(3\)  \(s\) đi!

Đề: Cho ba số thực dương  \(x,y,z\)  thỏa mãn  \(x+y+z=1\)  

Chứng minh rằng: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+yz}}\le\frac{3}{2}\)  \(\left(\text{*}\right)\)

Lời giải:

Từ giả thiết đã cho ở trên, ta dễ dàng chứng minh được  \(1>x,y,z>0\)  với mọi  \(x,y,z\in R^+\)

\(\Rightarrow\)  \(1-x>0;\)  \(1-y>0;\)  \(1-z>0\)  

Khi đó, áp dụng bất đẳng thức  \(AM-GM\)  cho hai số không âm với chú ý rằng  \(x+y+z=1\)  (theo giả thiết), ta có: 

\(\sqrt{\frac{xy}{z+xy}}=\sqrt{\frac{xy}{1-x-y+xy}}=\sqrt{\frac{xy}{\left(1-x\right)\left(1-y\right)}}\le\frac{1}{2}\left(\frac{x}{1-y}+\frac{y}{1-x}\right)\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị  \(y\)  \(\rightarrow\)  \(z\)  \(\rightarrow\)  \(x\), ta chứng minh được:

\(\sqrt{\frac{yz}{x+yz}}\le\frac{1}{2}\left(\frac{y}{1-z}+\frac{z}{1-y}\right)\)  \(\left(2\right)\)  và  \(\sqrt{\frac{xz}{y+xz}}\le\frac{1}{2}\left(\frac{z}{1-x}+\frac{x}{1-z}\right)\)  \(\left(3\right)\)

Cộng từng vế các bất đẳng thức \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right),\)  ta được:

\(VT\left(\text{*}\right)\le\frac{1}{2}\left[\left(\frac{y}{1-x}+\frac{z}{1-x}\right)+\left(\frac{x}{1-y}+\frac{z}{1-y}\right)+\left(\frac{x}{1-z}+\frac{y}{1-z}\right)\right]=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}=VP\left(\text{*}\right)\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{3}\)

23 tháng 4 2016

ở mẫu phải là dấu cộng mới đúng chứ bạn

3 tháng 5 2018

\(Do\)\(x;y\le1\Rightarrow x\ge xy\Rightarrow x-xy\ge0\)

Tương tự cộng vào đc ... >=0

Xét \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

\(\Leftrightarrow1-\left(x+y+x\right)+\left(xy+yz+zx\right)-xyz\ge0\)

\(\Leftrightarrow x+y+z-xy-yz-zx\le1-xyz\le1\)

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

10 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)

\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)

 

11 tháng 12 2016

ff