Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
Chỉ có biến đổi tương đương:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc
Từ giả thiết => \(\frac{y}{y+1}+\frac{z}{z+1}+\frac{t}{t+1}\le1-\frac{x}{x+1}=\frac{1}{x+1}\)
Áp dụng bất đẳng thức Cô-si cho ba số dương ta có
\(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}+\frac{t}{t+1}\ge3\sqrt[3]{\frac{yzt}{\left(y+1\right)\left(z+1\right)\left(t+1\right)}}\)
Tương tự \(\frac{1}{y+1}\ge3\sqrt[3]{\frac{xzt}{\left(x+1\right)\left(z+1\right)\left(t+1\right)}}\)
\(\frac{1}{z+1}\ge3\sqrt[3]{\frac{xyt}{\left(x+1\right)\left(y+1\right)\left(t+1\right)}}\)
\(\frac{1}{t+1}\ge3\sqrt[3]{\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Nhân từng vế bốn bất đẳng thức, ta được \(81xyzt\le1\)
a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)
\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)
b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)
Áp dụng câu a ta được
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
Từ (gt) \(\Rightarrow\frac{1}{1+x}=\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự \(\hept{\begin{cases}\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\\\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\frac{\left(xyz\right)^2}{\left[\left(1+x\right)\left(1+y\right)\left(1+z\right)\right]^2}}=\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}\)