Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O<=a,b,c<=2
0<=a^2 <=4
0<=b^2 <=4
0<=b^2 <=4
công vào
0<=a^2 +b^2 +c^2 +<= 3.4 =12
Vì \(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)
Ta có :
\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)
\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Rightarrow-2\left(ab+bc+ca\right)\le-4\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\\abc=0\\a+b+c=3\end{cases}}\)
\(\Rightarrow\left(a;b;c\right)=\left(2;1;0\right)\)và hoán vị.
a = 2 ( t/m )
b = 1 ( t/m )
c = 0 ( t/m )
vậy \(a^2+b^2+c^2\le5\)
từ giả thuyết suy ra : abc >0
có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0
\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)
Cộng a2+b2+c2 vào (1)
2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2
(a+b+c)2-4\(\ge\)a2+b2+c2
thay a+b+c=3 vào
9-4\(\ge\)a2+b2+c2
5 \(\ge\)a2+b2+c2
a2+b2+c2 \(\le\)5
Ta có:
\(\left(a+1\right)\left(a-2\right)\le0;\left(b+1\right)\left(b-2\right)\le0;\left(c+1\right)\left(c-2\right)\le0\)
\(\Leftrightarrow a^2\le2+a;b^2\le2+b;c^2\le2+c\)
\(\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
*)Min: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\)\(\Rightarrow P\ge3\)
Đẳng thức xảy ra khi \(a=b=c=1\)
*)Max: Không mất tính tổng quát giả sử \(a\ge b\ge c\)
Đặt \(f\left(x\right)=x^2\) là hàm lồi trên \((0;2)\) và thỏa \(a+b+c=3\) nên \((2;1;0) \succ(a,b,c)\)
Áp dụng BĐT Karamata ta có:
\(a^2+b^2+c^2\le2^2+1^2+0^2=5\)
Đẳng thức xảy ra khi \(a=2;b=1;c=0\)