K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

$a(a-1)\leq 0 <=> a^2\leq 0 => \sum a^2 \leq \sum a$
$(a-1)(b-1)(c-1)\leq 0 <=> a+b+c-\sum ab +abc -1 \leq 0$
$<=> \sum a^2 -\sum ab \leq a+b+c-\sum ab \leq 1-abc\leq 1$
^^ Mong olm dịch đ.c tatex mình ghi :v

11 tháng 6 2017

http://imgur.com/a/oPw0z
Đây là bài làm của mình :)

22 tháng 6 2020

Đợi t qua thi nhé full.

26 tháng 3 2017

Ta có: \((1-a)(1-b)(1-c)\geq 0\)

\(\Rightarrow 1-abc+(ab+bc+ca)-(a+b+c)\geq 0\)

\(\Rightarrow 1-(a+b+c)+(ab+bc+ca)\geq 0\)

\(\Rightarrow (a+b+c)-(ab+bc+ca)\leq 1\)

\(a;b;c\in \left [ 0;1 \right ]\) nên \(b^{2}\leq b;c^{3}\leq c\)

\(\Rightarrow a+b^{2}+c^{3}-ab-bc-ca\leq a+b+c-(ab+bc+ca)\leq 1\)

Đẳng thức xảy ra khi \(b=c=1\)\(a=0\)

26 tháng 3 2017

cho a,b,c thuộc [0;1]. cmr $a+b^{2}+c^{3}+ab+bc+ca \leq 1$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

25 tháng 5 2022

Vì \(0\le a\le b\le c\le1\) nên:

\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)

Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)

Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)

Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)

Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)

25 tháng 5 2022

undefined

vầy hả cj ;-;?

 

NV
12 tháng 5 2020

\(P=a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\)

Do \(0\le a;b;c\le1\Rightarrow P\ge0\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right)\) và có thể những giá trị khác làm biếng ko tìm :D

12 tháng 5 2020

Bạn có sai đề ko chứ nếu MAX thì mk làm đc