K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta có:

\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)

Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:

\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)

\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)

\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)

\("="\Leftrightarrow a=b=c=1\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

28 tháng 7 2018

Đề đúng đây nhé

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

Áp dụng BĐT Cosi ta có:

\(a^2+bc\ge2a\sqrt{bc}\)

\(\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2a\sqrt{bc}}\)

Cmtt: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{2b\sqrt{ac}}\)

\(\dfrac{1}{c^2+ab}\le\dfrac{1}{2c\sqrt{ab}}\)

Cộng vế theo vế ta được

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\) (C/m sau)

Nên \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

Chứng minh \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\text{​​}\Leftrightarrow\text{​​}\text{​​}2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\le2a+2b+2c\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\left(lđ\right)\)

28 tháng 7 2018

hình như sai đề bạn nhé. Đề vậy mk bó tay

20 tháng 5 2018

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bđt Cauchy ta có :

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=3\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Theo hệ thức lượng trong tam giác:\(\sin ^2a=\frac{1-\cos 2a}{2}\)

Áp dụng vào bài toán và sử dụng định lý hàm cos:

\(\sin ^2\frac{A}{2}=\frac{1-\cos A}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-(b-c)^2}{4bc}\)

Ta cần CM \(\frac{a^2-(b-c)^2}{4bc}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow (ab+ac)^2-(b^2-c^2)^2\leq 4a^2bc\)

\(\Leftrightarrow a^2b^2+a^2c^2\leq 2a^2bc+(b^2-c^2)^2\)

\(\Leftrightarrow (b^2-c^2)^2-a^2(b-c)^2\geq 0\Leftrightarrow (b-c)^2[(b+c)^2-a^2]\geq 0\)

BĐT luôn đúng do với \(a,b,c\) là độ dài ba cạnh tam giác thì \(b+c>a\leftrightarrow (b+c)^2>a^2\)

Vậy \(\sin ^2\frac{A}{2}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow \sin \frac{A}{2}\leq \frac{a}{b+c}\) (đpcm)

Tương tự : \(\sin \frac{B}{2}\leq \frac{b}{a+c},\sin \frac{C}{2}\leq \frac{c}{a+b}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{abc}{(a+b)(b+c)(c+a)}\)

Theo BĐT AM-GM: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\Rightarrow \frac{abc}{(a+b)(b+c)(c+a)}\leq \frac{1}{8}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{1}{8}\) (đpcm)

19 tháng 7 2017

@Akai Haruma giúp mình với

2 tháng 8 2018

\(\left\{{}\begin{matrix}\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}=\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge\sqrt{\dfrac{bc}{\left(b+2\right)\left(c+2\right)}}\\\dfrac{1}{b+2}\ge\sqrt{\dfrac{ca}{\left(c+2\right)\left(a+2\right)}}\\\dfrac{1}{c+2}\ge\sqrt{\dfrac{ab}{\left(a+2\right)\left(b+2\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\Leftrightarrow abc\le1< \dfrac{9}{8}\)

Đề sai !

Giả sử \(a=b=c=1\) thay vào phương trình đầu thì :

\(\dfrac{1}{1+2}+\dfrac{1}{1+2}+\dfrac{1}{1+2}=1\) ( Thỏa mãn )

Nhưng \(1.1.1< \dfrac{1}{8}\) ( vô lí )