Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (x3;y3;z3)=(a;b;c)(x,y,z>0)(x3;y3;z3)=(a;b;c)(x,y,z>0)
⇒xyz=1⇒xyz=1
Ta cần chứng minh
1x3+y3+1+1y3+z3+1+1z3+x3+1≤11x3+y3+1+1y3+z3+1+1z3+x3+1≤1
Áp dụng AM-GM, ta có: x3+y3+1=(x+y)(x2−xy+y2)+xyzx3+y3+1=(x+y)(x2−xy+y2)+xyz
≥(x+y)xy+xyz=xy(x+y+z)≥(x+y)xy+xyz=xy(x+y+z)
⇒1x3+y3+1≤1xy(x+y+z)⇒1x3+y3+1≤1xy(x+y+z)
Tương tự: 1y3+z3+1≤1yz(x+y+z)1y3+z3+1≤1yz(x+y+z)
1z3+x3+1≤1zx(x+y+z)1z3+x3+1≤1zx(x+y+z)
Cộng vế theo vế, ta được
....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1
Vậy ta có đpcm
Đẳng thức xảy ra khi a=b=c=1
Lời giải:
Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$
Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)
\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)
\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)
\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)
\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)
\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Cho a,b,c>0
Cmr
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
BĐT đầu đúng => \(a^3+b^3\ge ab\left(a+b\right)\)đúng. Dấu "=" xảy ra <=> a=b
Áp dụng vào bài toán: \(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng 3 cái trên lại: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)\(=\frac{c+a+b}{abc\left(a+b+c\right)}=\frac{1}{abc}.\)(đpcm)
Dấu "=" xảy ra <=> a=b=c.
một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường
giải hộ mk nha
Ừ thì sai đề vô căn cứ đây!
Dễ dàng chứng minh bất đẳng thức phụ với \(a,b>0\), và với chú ý rằng nghịch đảo hai vế và đổi chiều bất đẳng thức khi \(a>b\) và \(ab>0\)
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\) \(\Leftrightarrow\) \(a^3+b^3+abc\ge ab\left(a+b+c\right)\) \(\Leftrightarrow\) \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\) \(\left(1\right)\)
Hoàn toàn tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\) \(\left(2\right)\) và \(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c\)
bạn xem lại dấu BĐT ?
bạn thử thế a=1 c=2 b=3 vào là bik ngay đề sai