K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

.

6 tháng 3 2017

Do a,b<1 => a^3<a^2<a<1 ; b^3<b^2<b<1 ; ta có :

(1-a^2)(1-b) => 1+a^2b>a^2+b

=> 1+a^2b>a^3+b^3 hay a^3+b^3 <1+a^2b

Tương tự : b^3+c^3 < 1+b^2;c^3+a^3<1+c^2a

=> 2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a

6 tháng 3 2017

cảm ơn nhiều

26 tháng 8 2020

lớn hơn hay = thế ạ

26 tháng 8 2020

Ta có :

\(a^2b+b^2c+c^2a\ge\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)\left(1+2a^2b^2c^2\right)\ge9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^{3v}+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)(*)

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\ge3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\ge3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^4\ge3a^2b^2c^3\)

Cộng theo vế

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

#Cừu