
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(0< a< \frac{\pi}{2}\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(\Rightarrow tana=\frac{sina}{cosa}=\frac{3}{4}\) ; \(cota=\frac{1}{tana}=\frac{4}{3}\)
\(\Rightarrow A=\frac{\frac{4}{3}+\frac{3}{4}}{\frac{4}{3}-\frac{3}{4}}=...\)
\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{2.3+3}{4.3-5}=...\)
\(A=\frac{2sin^2a-3cos^2a}{sin^2a-2sina.cosa-cos^2a}=\frac{\frac{2sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{2sina.cosa}{sin^2a}-\frac{cos^2a}{sin^2a}}=\frac{2-3cot^2a}{1-2cota-cot^2a}=\frac{2-3.3^2}{1-2.3-3^2}=...\)

Do \(0< a< \frac{\pi}{2}\Rightarrow sina>0\)
\(cot^2a+1=\frac{1}{sin^2a}\Rightarrow sin^2a=\frac{1}{1+cot^2a}\)
\(\Rightarrow sina=\frac{1}{\sqrt{1+cot^2a}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

a)Do \(0^o< \alpha< 90^o\) nên \(0< sin\alpha< 1;0< cos\alpha< 1\).
Giả sử: \(tan\alpha< sin\alpha\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}< sin\alpha\)
\(\Leftrightarrow sin\alpha< sin\alpha cos\alpha\)
\(\Leftrightarrow sin\alpha\left(1-cos\alpha\right)< 0\)
\(\Leftrightarrow1-cos\alpha< 0\)
\(\Leftrightarrow cos\alpha>1\) (vô lý).
b) \(sin\alpha+cos\alpha=sin\alpha+sin\left(\dfrac{\pi}{2}-\alpha\right)\)
\(=2.sin\dfrac{\pi}{4}cos\left(\dfrac{\pi}{4}-\alpha\right)=\sqrt{2}cos\left(\dfrac{\pi}{4}-\alpha\right)\)
\(=\sqrt{2}sin\left(\dfrac{\pi}{4}+\alpha\right)=\sqrt{2}sin\left(45^o+\alpha\right)\).
Do \(0^o< \alpha< 90^o\) nên \(45^o< \alpha+45^o< 135^o\).
Vì vậy \(\dfrac{\sqrt{2}}{2}< sin\left(\alpha+45^o\right)< 1\).
Từ đó suy ra \(\sqrt{2}.sin\left(45^o+\alpha\right)>\sqrt{2}.\dfrac{\sqrt{2}}{2}=1\) (Đpcm).

0 < α < 90 => cosα > 0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{3}{5}\)
90 < β < 180 => cosβ < 0
Ta có: sin2β + cos2β = 1 => cosβ = \(\frac{-15}{17}\)
a = cos(α + β) = cosαcosβ - sinαsinβ = \(\frac{-77}{85}\)

\(\sin\alpha=\dfrac{2\sqrt{2}}{3};\cos\alpha=\dfrac{1}{3}\)
Khi \(cot \left(\right. a \left.\right) = 3\) và \(0^{\circ} < a < 90^{\circ}\), ta có thể áp dụng một số tính chất lượng giác để tính các giá trị khác liên quan đến góc \(a\).
1. Định nghĩa \(cot \left(\right. a \left.\right)\)
Ta biết rằng:
\(cot \left(\right. a \left.\right) = \frac{1}{tan \left(\right. a \left.\right)}\)
Do đó, từ \(cot \left(\right. a \left.\right) = 3\), ta có:
\(tan \left(\right. a \left.\right) = \frac{1}{3}\)
2. Tính giá trị các hàm lượng giác khác
Dựa trên giá trị \(tan \left(\right. a \left.\right) = \frac{1}{3}\), ta có thể tính giá trị của các hàm lượng giác khác như \(sin \left(\right. a \left.\right)\), \(cos \left(\right. a \left.\right)\), và \(sec \left(\right. a \left.\right)\).
a. Tính \(sin \left(\right. a \left.\right)\) và \(cos \left(\right. a \left.\right)\)
Ta sử dụng định lý Pythagoras trong tam giác vuông với cạnh đối và cạnh kề:
\(tan \left(\right. a \left.\right) = \frac{\text{c}ạ\text{nh}\&\text{nbsp};đ \overset{ˊ}{\hat{\text{o}}} \text{i}}{\text{c}ạ\text{nh}\&\text{nbsp};\text{k} \overset{ˋ}{\hat{\text{e}}}} = \frac{1}{3}\)
Giả sử cạnh đối là 1 và cạnh kề là 3, ta có thể tính cạnh huyền \(h\) theo định lý Pythagoras:
\(h = \sqrt{1^{2} + 3^{2}} = \sqrt{1 + 9} = \sqrt{10}\)
Vậy:
\(sin \left(\right. a \left.\right) = \frac{\text{c}ạ\text{nh}\&\text{nbsp};đ \overset{ˊ}{\hat{\text{o}}} \text{i}}{h} = \frac{1}{\sqrt{10}}\)\(cos \left(\right. a \left.\right) = \frac{\text{c}ạ\text{nh}\&\text{nbsp};\text{k} \overset{ˋ}{\hat{\text{e}}}}{h} = \frac{3}{\sqrt{10}}\)
b. Tính \(sec \left(\right. a \left.\right)\) và \(csc \left(\right. a \left.\right)\)
3. Tóm tắt kết quả
Tham khảo