Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(A=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\)
\(=\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\)
\(=\dfrac{1+cos\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1}{sin\alpha}\)
đặt \(\sin\alpha=a;\cos\alpha=b\)
khi đó:
\(a+b=\frac{7}{5}\Leftrightarrow a^2+b^2+2ab=\frac{49}{25}\)
\(\Leftrightarrow1+2ab=\frac{49}{25}\Leftrightarrow2ab=\frac{24}{25}\Leftrightarrow ab=\frac{12}{25}\)
ta có
\(\left\{{}\begin{matrix}a+b=\frac{7}{5}\\ab=\frac{12}{25}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left(\frac{7}{5}-b\right)b=\frac{12}{25}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\b^2-\frac{7}{5}b+\frac{12}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left(b-\frac{3}{5}\right)\left(b-\frac{4}{5}\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left[{}\begin{matrix}b=\frac{3}{5}\\b=\frac{4}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\frac{3}{5}\\b=\frac{4}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\frac{4}{5}\\b=\frac{3}{5}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{3}{4}\\\frac{a}{b}=\frac{4}{3}\end{matrix}\right.\)\(\)
hay tan \(\alpha\approx37^o\)hoặc tan\(\alpha\approx53^o\)
a) \(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)
b) \(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)
c) \(tan^2\alpha\left(2sin^2\alpha+3cos^2\alpha-2\right)=tan^2\alpha\left[cos^2\alpha+2\left(sin^2\alpha+cos^2\alpha\right)-2\right]=\dfrac{sin^2\alpha}{cos^2\alpha}\times cos^2\alpha=sin^2\alpha\)
a)
\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)
b)\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)
c) mình chưa rõ đề nha
Lời giải:
Ta có:
$\sin ^2a=1-\cos ^2a=1-(\frac{3}{5})^2=\frac{16}{25}$
$0< a< 90$ nên $\sin a>0$. Do đó $\sin a=\frac{4}{5}$
$\tan a=\frac{\sin a}{\cos a}=\frac{4}{5}: \frac{3}{5}=\frac{4}{3}$
$\cot a=\frac{1}{\tan a}=\frac{3}{4}$
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)
Câu cuối đề bài sai
Tính \(tana+cota\) à bạn?