Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
\(0< x,y< 1\Rightarrow\dfrac{x}{1-x}+\dfrac{y}{1-y}>0\)
\(\left(\dfrac{x}{1-x}+\dfrac{y}{1-y}\right)^{2018}=1\Rightarrow\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\)
\(\Rightarrow x-xy+y-xy=1-x-y+xy\Rightarrow2\left(x+y\right)-1=3xy\) (1)
\(A=\left(x+y+\sqrt{\left(x+y\right)^2-3xy}\right)^{2019}=\left(x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\right)^{2019}\)
\(A=\left(x+y+\sqrt{\left(x+y-1\right)^2}\right)^{2019}=\left(x+y+\left|x+y-1\right|\right)^{2019}\)
Ta xét dấu \(x+y-1\) để phá trị tuyệt đối:
Từ (1) ta cũng có \(2x-1=3xy-2y=y\left(3x-2\right)\Rightarrow y=\dfrac{2x-1}{3x-2}\)
Mà \(0< y< 1\Rightarrow0< \dfrac{2x-1}{3x-2}< 1\Rightarrow0< x< \dfrac{1}{2}\)
\(x+y-1=x+\dfrac{2x-1}{3x-2}-1=\dfrac{3x^2-3x+1}{3x-2}< 0\) \(\forall x:0< x< \dfrac{1}{2}\)
\(\Rightarrow\left|x+y-1\right|=1-x-y\)
\(\Rightarrow A=\left(x+y+1-x-y\right)^{2019}=1^{2019}=1\)
a) \(\sqrt{\dfrac{9x^2}{25}}+\dfrac{1}{5}x\) (x<0)
=\(\dfrac{-3x}{5}+\dfrac{x}{5}\) (vì x<0)
=\(\dfrac{-2x}{5}\)
b)2xy\(\sqrt{\dfrac{9x^2}{y^6}}-\sqrt{\dfrac{49x^2}{y^2}}\) (x<0 , y>0)
=2xy\(\dfrac{-3x}{y^3}+\dfrac{7x}{y}\)(vì x<y<0)
=\(\dfrac{-6x}{y^2}+\dfrac{7xy}{y^2}\)
=\(\dfrac{7xy-6x}{y^2}\)
c) \(\dfrac{1}{ab}\sqrt{a^6\left(a-b\right)^2}\) (a<b<0)
=\(\dfrac{1}{ab}\sqrt{a^6}\sqrt{\left(a-b\right)^2}\)
=\(\dfrac{1}{ab}\left(-a^3\right)\left(b-a\right)\) (vì a<b<0)
=\(\dfrac{\left(a-b\right)a^3}{a-b}\)
=a3
Cảm ơn bạn Thu Trang nhiều nhé, sau này có gì giúp đỡ nhau nha.
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)
\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)
\(=\dfrac{1}{2\sqrt{2}a}\)
\(=\dfrac{\sqrt{2}}{4a}\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
chịu đấy :v
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)
\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)
\(=\dfrac{-x+1+x^2}{x-3}\)
d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)
\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\sqrt{x^2}\)
\(=4x-2\sqrt{x}+x\)
\(=5x-2\sqrt{2}\)