Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{1-x}+\frac{y}{1-y}=1\)
\(\Leftrightarrow\frac{x+y-2xy}{\left(x-1\right)\left(y-1\right)}=1\)
\(\Rightarrow x+y-2xy=xy-x-y+1\)
\(\Rightarrow2\left(x+y\right)-1=3xy\)
Lại có: \(P=x+y+\sqrt{x^2-xy+y^2}\)
\(=x+y+\sqrt{\left(x+y\right)^2-3xy}\)
\(=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)
\(=x+y+\sqrt{\left(x+y-1\right)^2}\)
Mặt khác: \(\frac{x}{1-x}+\frac{y}{1-y}=1\); \(0< x;y< 1\)
\(\Rightarrow\frac{x}{x-1}< 1\)
\(\Rightarrow x< \frac{1}{2}\)
Tương tự: \(y< \frac{1}{2}\)
=> x+y <1
Do đó P=1
Cho x, y thỏa mãn 0<x<1, 0<y<1 và \(\frac{x}{1-x}+\frac{y}{1-y}=1\)
Tính: P=\(x+y+\sqrt{x^2-xy+y^2}\)
Đề bài sai:
\(0< x< 1\Rightarrow x-1< 0\Rightarrow\frac{x}{x-1}< 0\)
Tương tự: \(\frac{y}{y-1}< 0\)
\(\Rightarrow\frac{x}{x-1}+\frac{y}{y-1}< 0\Rightarrow\frac{x}{x-1}+\frac{y}{y-1}=1\) là hoàn toàn vô lý
2. ĐK: \(x\ge-5\)
\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)
\(\forall x\ge-5\) ta luôn có \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) x = 4 (nhận)
1) \(x^2+y=y^2+x\Leftrightarrow x^2-y^2-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=x\\y=1-x\end{cases}}\). Vì x,y là hai số khác nhau nên ta loại trường hợp x = y. Vậy ta có y = x-1.
\(P=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2+x^2-2x+1-x^2+x}{-x^2+x-1}\)
\(=\frac{x^2-x+1}{-\left(x^2-x+1\right)}=-1\)