\(\sqrt{a}>a\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

\(0< a< 1\Rightarrow\hept{\begin{cases}a>0\\a-1< 0\end{cases}\Rightarrow}a\left(a-1\right)< 0\Rightarrow a^2-a< 0\Rightarrow a^2< a\Rightarrow a< \sqrt{a}\)

Vậy nếu 0 < x < 1 thì \(\sqrt{a}>a\)

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...

21 tháng 6 2017

\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)

\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)

Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)

6 tháng 8 2017

Vì x>0 , y>0 nên   \(x=\sqrt{x}^2\) \(y=\sqrt{y}^2\) Ta có :

 \(x\le y\Leftrightarrow\sqrt{x}^2-\sqrt{y}^2\le0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\le0\)

Chia hai vế cho  \(\left(\sqrt{x}+\sqrt{y}\right)\ge0\)được  \(\sqrt{x}-\sqrt{y}\le0\Leftrightarrow\sqrt{x}\le\sqrt{y}\)