\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

BĐT tương đương vs

(\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\))^2\(\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)( BĐT bunyakovsky ) luôn đúng

\(\Rightarrow\) đpcm

11 tháng 8 2016

Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)

a.

\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)

\(\Rightarrow-5\le2x+3y\le5\)

b.

\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)

\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)

Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)

Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.

c.

bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

d.

bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)

\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:

\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

12 tháng 9 2017

ý a ko cần giải đâu nha mk ra òi

Dễ thôi

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

21 tháng 7 2019

Em thử nha, sai thì thôia) bình phương và rút gọn, ta cần chứng minh:

\(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

Tới đây có thể áp dụng bđt bunhiacopki và thu được đpcm. Nếu không thì

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi ad = bc

21 tháng 7 2019

\( a)\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} \left( * \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {{{\left( {a + b} \right)}^2}{{\left( {c + d} \right)}^2}} \ge {a^2} + 2ac + {c^2} + {b^2} + 2bd + {d^2}\\ \Leftrightarrow \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge ac + bd\left( 1 \right) \)

Nếu \(ac+bd<0\) thì (1) đúng

Nếu \(ac+bd\ge0\) thì (1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (đúng)

Dấu "=" của bất đẳng thức (*) xảy ra:

\(\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\\left(ad-bc\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\ab-bc=0\end{matrix}\right.\)