Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{x+3+4x-3}{xy}=\dfrac{5x}{xy}=\dfrac{5}{y}\\ b,=\dfrac{x-2+4x-3}{x-1}=\dfrac{5\left(x-1\right)}{x-1}=5\\ c,=\dfrac{x^2+4-6x+5}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\\ d,=\dfrac{4-x^2+2x^2-2x+5-4x}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\)
a) \(\dfrac{5xy^2-x^2y+4xy^2+5x^2y}{3xy}=\dfrac{9xy^2+4x^2y}{3xy}=\dfrac{xy\left(9y+4x\right)}{3xy}=\dfrac{9y+4x}{3}\)
b) \(\dfrac{x+3+x-1+x+4}{x+2}=\dfrac{3x+6}{x+2}=\dfrac{3\left(x+2\right)}{x+2}=3\)
\(\dfrac{5xy^2-x^2y}{3xy}+\dfrac{4xy^2+5x^2y}{3xy}=\dfrac{5xy^2-x^2y+4xy^2+5x^2y}{3xy}=\dfrac{9xy^2+4x^2y}{3xy}=\dfrac{xy\left(9y+4x\right)}{3xy}=\dfrac{9y+4x}{3}\)
\(\dfrac{x+3}{x+2}+\dfrac{x-1}{x+2}+\dfrac{x+4}{x+2}=\dfrac{x+3+x-1+x+4}{x+2}=\dfrac{3x+6}{x+2}=\dfrac{3\left(x+2\right)}{x+2}=3\)
kết quả thôi nha không nó dài lắm:
e) =\(\dfrac{3}{2x}\)
f) =\(\dfrac{2x}{\left(x+2\right)\left(x-2\right)}\)
g) =\(\dfrac{2}{x+1}\)
h) =\(\dfrac{4x+5}{x+2}\)
b: \(=\dfrac{x+3+x-1+x+4}{x+2}=\dfrac{3x+6}{x+2}=3\)
\(a,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{3x^2}\\ b,=\dfrac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\\ d,=\dfrac{1}{\left(x+3\right)^2}-\dfrac{1}{\left(x-3\right)^2}+\dfrac{x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\dfrac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
f. \(4x^3-4x^2+4x-\left(4x-1\right)\left(x^2-x\right)\)
g\(-2x^3+3x-4\)
\(=4x^3-4x^2+4x-\left(4x^3-4x^2-x^2+x\right)\\ =4x^3-4x^2+4x-4x^3+5x^2-x=x^2+3x\)
\(a,\dfrac{1}{2x+4}=\dfrac{x-2}{2\left(x+2\right)\left(x-2\right)};\dfrac{x}{2x-4}=\dfrac{x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}\\ \dfrac{3}{4-x^2}=\dfrac{-6}{2\left(x-2\right)\left(x+2\right)}\\ b,\dfrac{x}{x^3+1}=\dfrac{x^2}{x\left(x+1\right)\left(x^2-x+1\right)}\\ \dfrac{x+1}{x^2+x}=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x\left(x+1\right)\left(x^2-x+1\right)}\\ \dfrac{x+2}{x^2-x+1}=\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x^2-x+1\right)}\)