K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Vì độ chính xác đến hàng trăm (độ chính xác là 0,05) nên ta quy tròn số 41,34 đến hàng phần chục.

Vậy số quy tròn của chiều cao h là 41,3m.

Đáp án C

7 tháng 1 2018

Chiều cao của một cái cây đo được là h ¯ = 12,36 m ± 0,05 m . Khi đó số quy tròn của chiều cao h = 12,36 m đến hàng phần chục (vì sai số 0, 05m) là: 12,4 m

Đáp án A

18 tháng 10 2017

Ta có: A1B1 = AB = 12 m

Xét ΔDC1A1 có: C1A1 = C1D.cot49o

Xét ΔDC1B1 có: C1B1 = C1D.cot35o

Mà A1B1 = C1B1 - C1A1 = C1D.cot35o - C1D.cot49o

        = C1D.(cot35o - cot49o)

Giải bài 11 trang 60 sgk Hình học 10 | Để học tốt Toán 10

⇒ CD = CC1 + C1D = 1,3 + 21,47 = 22,77 m.

Vậy chiều cao của tháp là 22,77m.

27 tháng 12 2023

5

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gắn hệ trục tọa độ với gốc tọa độ trùng với trung điểm của đoạn thẳng ứng với mặt cắt ngang nhỏ nhất của cột trụ.

Khi đó ta có phương trình của (H) là \(\frac{{{x^2}}}{{0,16}} - \frac{{{y^2}}}{{16}} = 1\)

Độ rộng của trụ ứng với độ cao 5m ứng với điểm trên (H) có tung độ bằng 2

Suy ra \(\frac{{{x^2}}}{{0,16}} - \frac{{{2^2}}}{{16}} = 1 \Rightarrow x \approx 0,45\)

Vậy độ rộng của cột trụ tại điểm có chiều cao 5m xấp xỉ bằng \(2.0,45 = 0,9\left( m \right)\).

18 tháng 4 2019

Đáp án: A

Vì độ chính xác đến hàng phần chục nên ta quy tròn số 1372,5 đến hàng đơn vị. Vậy số quy tròn là 1373.

30 tháng 3 2017

Ta có: Chiều cao của tháp DC = DC1 + C1C = 1,3 + DC1

=> DC = 1,3 +

=> DC ≈ 22,8m

30 tháng 3 2017

cãi đi bé Bài 11 trang 60 sgk hình học 10 - loigiaihay.com

19 tháng 5 2017

Có:
\(DC=AC.tan43^o=\left(AB+BC\right).tan43^o\).
\(DC=BC.tan67^o\).
Vì vây:
\(\left(AB+BC\right).tan43^o=BC.tan67^o\)
\(\Leftrightarrow BC=\dfrac{AB.tan43^o}{tan67^o-tan43^o}=26,55m\).
Suy ra: \(DC=BC.tan67^o=26,55.tan67^o=62,55m\).
Vậy chiều cao DC của chân tháp là 62,55m.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\widehat {D{A_1}{C_1}} = \widehat {{A_1}D{B_1}} + \widehat {D{B_1}{A_1}} \Rightarrow \widehat {{A_1}D{B_1}} = {49^ \circ } - {35^ \circ } = {14^ \circ }\)

Áp dụng định lí sin trong tam giác \({A_1}D{B_1}\) , ta có:

\(\begin{array}{l}\frac{{{A_1}D}}{{\sin {B_1}}} = \frac{{{A_1}{B_1}}}{{\sin D}} \Leftrightarrow \frac{{{A_1}D}}{{\sin {{35}^ \circ }}} = \frac{{12}}{{\sin {{14}^ \circ }}}\\ \Rightarrow {A_1}D = \sin {35^ \circ }.\frac{{12}}{{\sin {{14}^ \circ }}} \approx 28,45\end{array}\)

Áp dụng định lí sin trong tam giác \({A_1}D{C_1}\) , ta có:

\(\begin{array}{l}\frac{{{A_1}D}}{{\sin {C_1}}} = \frac{{{C_1}D}}{{\sin {A_1}}} \Leftrightarrow \frac{{28,45}}{{\sin {{90}^ \circ }}} = \frac{{{C_1}D}}{{\sin {{49}^ \circ }}}\\ \Rightarrow {C_1}D = \sin {49^ \circ }.\frac{{28,45}}{{\sin {{90}^ \circ }}} \approx 21,47\end{array}\)

Do đó, chiều cao CD của tháp là: \(21,47 + 1,2 = 22,67\;(m)\)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác BEDC có:

∠BEC = 90o (CE là đường cao)

∠BDC = 90o (BD là đường cao)

=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEDC là tứ giác nội tiếp

b) Xét ΔAEC và ΔADB có:

∠BAC là góc chung

∠AEC = ∠BDA = 90o

=> ΔAEC ∼ ΔADB (g.g)

\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow\text{AE.AB = AC.AD}\)

c) Ta có:

∠FBA = 90o (góc nội tiếp chắn nửa đường tròn)

=>FB⊥AB

Lại có: CH⊥AB (CH là đường cao)

=> CH // FB

Tương tự,( FCA) = 90o (góc nội tiếp chắn nửa đường tròn)

=>FC⊥AC

BH là đường cao => BH ⊥AC

=> FC // BH

Xét tứ giác CFBH có:

CH // FB

FC // BH

=> Tứ giác CFBH là hình bình hành.

Mà I là trung điểm của BC

=> I cũng là trung điểm của FH

Hay F, I, H thẳng hàng.

2) Diện tích xung quanh của hình trụ:

S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)

=> R = 8 cm ; h = 8cm

Thể tích của hình trụ là

V = πR2 h = π.82.8 = 512π (cm3)

HÌNH TRONG THỐNG KÊ HỎI ĐÁP NHA VỚI LẠI MIK TRẢ LỜI TOÀN CÂU KHÓ MÀ CHẲNG CÓ CÁI GP NÀO

VCM JACK  trả lok đ nè