Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước sóng dài nhất của vạch quang phổ trong dãy Lai-man thu được khi nguyên tử nhảy từ L về K. Khi đó \(\lambda_1\) thỏa mãn: \(hf_1=\frac{hc}{\lambda_1}= E_2-E_1,(1)\)
Bước sóng \(\lambda_2\)của vạch kề với \(\lambda_1\) thu được khi nguyên tử nhảy từ M về K.
Khi đó \(\lambda_2\) thỏa mãn: \(hf_2=\frac{hc}{\lambda_2}= E_3-E_1,(2)\)
Bước sóng \(\lambda_{\alpha}\) trong vạch quang phổ \(H_{\alpha}\) trong dãy Ban-me thu được khi nguyên tử nhảy từ M về L.
Khi đó \(\lambda_{\alpha}\) thỏa mãn: \(hf_{\alpha}=\frac{hc}{\lambda_{\alpha}}= E_3-E_2,(3)\)
Trừ (2) cho (1) thu được (3):
\(\frac{hc}{\lambda_{2}}-\frac{hc}{\lambda_{1}}= \frac{hc}{\lambda_{\alpha}}\)=> \( \frac{1}{\lambda_{\alpha}}=\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\)
=> \(\lambda_{\alpha}=\frac{\lambda_1\lambda_2}{\lambda_1-\lambda_2}.\)
\(W=W_{Cmax}= W_L+W_C\)
\(=> W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)=3,96.10^{-4}J= 396\mu J.\)
\(I_0 = q_0.\omega = 4.10^{-12}.10^7= 4.10^{-5}A.\)
\(\left(\frac{q}{q_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
=> \(\left(\frac{i}{I_0}\right)^2=1-\left(\frac{q}{q_0}\right)^2 = 1 - \left(\frac{2.10^{-12}}{4.10^{-12}}\right)^2= \frac{3}{4}.\)
=> \(i = I_0.\frac{\sqrt{3}}{2}=2\sqrt{3}.10^{-5}A.\)
Do u vuông pha với i nên áp dụng công thức độc lập thời gian:
\((\dfrac{u}{U_0})^2+(\dfrac{i}{I_0})^2=1\)
\(Z_L=140\Omega\)
\(Z_L=100\Omega\)
R thay đổi để P mạch cực đại khi \(R+r=\left|Z_L-Z_C\right|\Leftrightarrow R+30=\left|140-100\right|\Leftrightarrow R=10\Omega\)
Bonus: \(P_{max}=\frac{U^2}{2\left(R+r\right)}=\frac{100^2}{2\left(10+30\right)}=125W\)
\(Z_L=\omega L=140\Omega\)
\(Z_C=\dfrac{1}{\omega C}=100\Omega\)
Công suất của cuộn dây: \(P_{cd}=I^2.r=\dfrac{U^2}{(R+r)^2+(Z_L-Z_C)^2}.30=\dfrac{100^2}{(R+30)^2+(140-100)^2}.30\)
Từ biểu thức trên ta thấy \(P_{cdmax}\) khi \(R=0\)
Lúc đó \(P_{cdmax}=\dfrac{100^2}{30^2+40^2}.30=120W\)
Hệ thức Anh -xtanh trong hiện tượng quang điện
\(hf = A_1+W_{đ1}.(1)\)
\(hf = A_2+W_{đ2}.(2)\)
Ta có \(A_1 = \frac{hc}{\lambda_{01}}; A_2 = \frac{hc}{\lambda_{02}}\)
\( \lambda_{02} = 2\lambda_{01}=> A_1 = 2A_2. \)
Trừ vế với vế của phương trình (1) cho phương trình (2) ta có
=> \(0= A_1-A_2+W_{đ 1}-W_{đ 2}.\)
=> \(W_{đ2}=( A_1-A_2)+W_{đ1} = A_2+W_{đ1}\)
Mà \(A_2 >0\) => \(W_{đ2} > W_{đ1}\).