\(\dfrac{1}{5},1\dfrac{1}{4},0,03\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Gọi 3 phần được chia là \(x;y;z\)

Theo đề bài ta có:

\(\dfrac{1}{5}x=1\dfrac{1}{4}y=0,03z\)

\(\Rightarrow\dfrac{1}{5}x=\dfrac{5}{4}y=\dfrac{3}{100}z\)

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{z}{\dfrac{100}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{z}{\dfrac{100}{3}}\)

\(=\dfrac{x+y+z}{5+\dfrac{4}{5}+\dfrac{100}{3}}\)

\(=\dfrac{980}{\dfrac{587}{15}}=25...\)

....

31 tháng 7 2017

Gọi 3 phần cần tìm là \(x,y,z\)

Theo đề bài ta có:

\(x+y+z=980\)\(x:y:z=\dfrac{1}{5}:1\dfrac{1}{4}:0,3\)

Biến đổi tỉ số giữa các phân số thành tỉ số giữa các số nguyên, ta có:

\(\dfrac{1}{5}:1\dfrac{1}{4}:0,3=\dfrac{1}{5}:\dfrac{5}{4}:\dfrac{3}{10}=\dfrac{4}{20}:\dfrac{25}{20}:\dfrac{6}{20}\)

Do đó: \(\dfrac{x}{4}=\dfrac{y}{25}=\dfrac{z}{6}=\dfrac{x+y+z}{4+25+6}=\dfrac{980}{35}=28\)

Vậy \(\left\{{}\begin{matrix}x=28.4=112\\y=28.25=700\\z=28.6=168\end{matrix}\right.\)

31 tháng 7 2017

Chết! Nhầm 0,03 thành 0,3 rồi.

Gọi ba phần đó lần lượt là a,b,c

Theo đề, ta có: \(\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{3}{10}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{3}{10}}=\dfrac{480}{\dfrac{3}{4}}=640\)

Do đó: a=128; b=160; c=192

Gọi ba số cần tìm lần lượt là a,b,c

Theo đề, ta có: \(\dfrac{a}{\dfrac{6}{5}}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{23}{10}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{6}{5}}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{23}{10}}=\dfrac{a+b+c}{\dfrac{6}{5}+\dfrac{3}{2}+\dfrac{23}{10}}=\dfrac{15}{5}=3\)

Do đó: a=3,6; b=4,5; c=6,9

 

5 tháng 12 2018

Bạn ơi số 490 là tổng hay tích của 3 số đó

5 tháng 12 2018

Gọi 3 phần cần chia tỉ lệ với các số \(\frac{1}{5}\)\(1\frac{1}{4}\); 0,3 lần lượt là a,b,c

Ta có \(\frac{a}{\frac{1}{5}}\)\(\frac{b}{1\frac{1}{4}}\)\(\frac{c}{0,3}\)=> \(\frac{a}{\frac{1}{5}}\)\(\frac{b}{\frac{5}{1}}\)\(\frac{c}{\frac{3}{10}}\)và a + b + c = 490

Áp dụng t/c của dãy tỉ số bằng nhau ta có

\(\frac{a}{\frac{1}{5}}\)\(\frac{b}{\frac{5}{1}}\)=\(\frac{c}{\frac{3}{10}}\)\(\frac{a+b+c}{\frac{1}{5}+\frac{5}{1}+\frac{3}{10}}\)\(\frac{490}{\frac{7}{4}}\)= 280

=> a = 280 . \(\frac{1}{5}\)= 50

     b = 280 . \(\frac{5}{4}\)= 350

     c = 280 . \(\frac{3}{10}\) = 84

Vậy ...

Nếu mik giải đúng rồi thì hãy cho mik nhé

26 tháng 2 2020

a) Gọi ba phần cần chia của số 185 là a,b,c

ta có a+b+c= 185

Vì a,b,c tỉ lệ thuận với 3/5; 7/4 và 7/10

suy ra \(\frac{a}{\frac{3}{5}}=\frac{b}{\frac{7}{4}}=\frac{c}{\frac{7}{10}}=\frac{a+b+c}{\frac{3}{5}+\frac{7}{4}+\frac{7}{10}}=\frac{185}{\frac{61}{20}}=\frac{3700}{61}\)

suy ra a=2220/61; b=5475/61; c=2590/61

b) Gọi ba phần cần chia của số 480 là a,b,c

ta có a+b+c= 480

Vì a,b,c tỉ lệ nghịch với 5;4 và 10/3

nên 5a=4b=10/3c

hay \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{3}{10}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{3}{10}}=\frac{480}{\frac{3}{4}}=640\)

a=640:5=128

b= 640:4=160

c= 640.3/10=192

23 tháng 3 2017

Gọi 3 phân số cần tìm là a , b , c .

Vì mẫu số tỉ lệ nghịch với \(\dfrac{1}{4}\),\(\dfrac{1}{5}\),\(\dfrac{1}{6}\) nên sẽ tỉ lệ thuận với 4;5;6

=>a:b:c = \(\dfrac{5}{4}\):\(\dfrac{7}{5}\):\(\dfrac{11}{6}\) = \(\dfrac{5}{4}\).60 : \(\dfrac{7}{5}\).60 : \(\dfrac{11}{6}\).60 = 75:84:110

=>\(\dfrac{a}{75}\)=\(\dfrac{b}{84}\)=\(\dfrac{c}{110}\)

Vì tổng của chúng là\(15\dfrac{83}{120}\) nên a+b+c = \(15\dfrac{83}{120}\)=1883

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{75}\)=\(\dfrac{b}{84}\)=\(\dfrac{c}{110}\)=\(\dfrac{a+b+c}{75+84+110}\)=\(\dfrac{1883}{269}\)=7

\(\dfrac{a}{75}\)=7 => a = 75.7 = 525

\(\dfrac{b}{84}\)=7 => b = 84.7 = 588

\(\dfrac{c}{110}\)=7 => c = 110.7 = 770

Vậy 3 phân số tối giản cần tìm là 525 ; 585 ; 770 .

8 tháng 12 2018

Gọi 3 phần số 786 chia ra là a,b,c

Áp dung Tc của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{0.2}=\frac{b}{3\frac{1}{3}}=\frac{c}{\frac{4}{5}}=\frac{a+b+c}{0.2+3\frac{1}{3}+\frac{4}{5}}=\frac{786}{\frac{13}{3}}\)

5 tháng 3 2017

Gọi 3 phân số cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\)

Theo đề bài ta có:

\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=15\frac{83}{120}=\frac{1883}{120}\) (1)

\(a\div c\div e=5\div7\div11\Leftrightarrow\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)

Đặt các tỉ số trên là \(p\)

\(\Rightarrow\left\{\begin{matrix}a=5p\\b=7p\\c=11p\end{matrix}\right.\) (2)

\(b\div d\div f=\frac{1}{\frac{1}{4}}\div\frac{1}{\frac{1}{5}}\div\frac{1}{\frac{1}{6}}=4\div5\div6\Leftrightarrow\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)

Đặt các tỉ số trên là \(q\)

\(\Rightarrow\left\{\begin{matrix}b=4q\\d=5q\\f=6q\end{matrix}\right.\) (3)

Từ (1);(2) và (3)

\(\Rightarrow\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5p}{4q}+\frac{7p}{5q}+\frac{11p}{6q}=\frac{1883}{120}\)

\(\Rightarrow\frac{5}{4}.\frac{p}{q}+\frac{7}{5}.\frac{p}{q}+\frac{11}{6}.\frac{p}{q}=\frac{p}{q}\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right)=\frac{1883}{120}\)

\(\Rightarrow\frac{269}{60}.\frac{p}{q}=\frac{1883}{120}\Rightarrow\frac{p}{q}=\frac{7}{2}\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{b}=\frac{5}{4}.\frac{7}{2}=\frac{35}{8}\\\frac{c}{d}=\frac{7}{5}.\frac{7}{2}=\frac{49}{10}\\\frac{e}{f}=\frac{11}{6}.\frac{7}{2}=\frac{77}{12}\end{matrix}\right.\)

Vậy 3 phân số đó là: \(\left\{\begin{matrix}\frac{35}{8}\\\frac{49}{10}\\\frac{77}{12}\end{matrix}\right.\)

9 tháng 1 2018

Gọi 3 cạnh tam giác đó lần lượt là \(x;y;z>0\)

a) \(x;y;z\) tỉ lệ thuận với \(3;4;5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=t\Leftrightarrow\left\{{}\begin{matrix}x=3t\\y=4t\\z=5t\end{matrix}\right.\)

Theo bđt tam giác: \(x+y>z\Leftrightarrow7t>5t\left(tm\right)\)

Có tồn tại tam giác như vậy

b) \(x;y;z\) tỉ lệ thuận với \(\dfrac{1}{3};\dfrac{1}{4};\dfrac{1}{5}\Rightarrow3x=4y=5z\)

Đặt: \(3x=4y=5z=t\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{t}{3}\\y=\dfrac{t}{4}\\z=\dfrac{t}{5}\end{matrix}\right.\)

Theo bất đẳng thức tam giác: \(y+z>x\Leftrightarrow\dfrac{t}{4}+\dfrac{t}{5}>\dfrac{t}{3}\Leftrightarrow\dfrac{9t}{20}>\dfrac{9t}{27}\left(tm\right)\)

Có tồn tại tam giác như vậy

10 tháng 1 2018

ae tick cho cđúng cho câu này nào