Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có:
\(a-b=3\Rightarrow a=b+3\)
Thay \(a=b+3\) vào \(B\), ta có:
\(B=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ B=1-\dfrac{3b+12}{3b+12}\\ B=1-1\\ B=0\)
Vậy: \(B=0\)
---
Chúc bạn học tốt
theo bài ra ta có:
\(B=\frac{a-8}{b-5}-\frac{4a-b}{3a+3}\)
\(\Rightarrow B=\frac{a-8}{b-5}-1-\frac{4a-b}{3a+3}+1\)
\(\Rightarrow B=\left(\frac{a-8}{b-5}-1\right)+\left(1-\frac{4a-b}{3a+3}\right)\)
\(\Rightarrow B=\frac{a-8-\left(b-5\right)}{b-5}+\frac{3a+3-\left(4a-b\right)}{3a+3}\)
\(\Rightarrow B=\frac{a-8-b+5}{b-5}+\frac{3a+3-4a+b}{3a+3}\)
\(\Rightarrow B=\frac{a-b-8+5}{b-5}+\frac{b-a+3}{3a+3}\) \(\Rightarrow B=\frac{3-3}{b-5}+\frac{-3+3}{3a+3}\)
\(\Rightarrow B=0+0\\ \Rightarrow B=0\)
vậy B = 0
1)Tìm x:
a)7x=9y và 10x-8y=68
Ta có:7x=9y \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\Rightarrow\dfrac{10x-8y}{9.10-7.8}=\dfrac{68}{34}=2\)
\(\Rightarrow\dfrac{x}{9}=2\Rightarrow x=2.9=18\)
\(\dfrac{y}{7}=2\Rightarrow y=2.7=14\)
a/ Ta có :
\(7x=9y\)
\(\Leftrightarrow\dfrac{7x}{63}=\dfrac{9y}{63}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\Leftrightarrow\dfrac{10x}{90}=\dfrac{8y}{56}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{10x}{90}=\dfrac{8y}{56}=\dfrac{10x-8y}{90-56}=\dfrac{68}{34}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10x}{90}=2\Leftrightarrow x=18\\\dfrac{8y}{56}=2\Leftrightarrow y=14\end{matrix}\right.\)
Vậy ................
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\\ \dfrac{2k}{2}=\dfrac{3k}{3}=\dfrac{4k}{4}\\ \Rightarrow\dfrac{\left(2k\right)^2}{2^2}=\dfrac{\left(3k\right)^2}{3^2}=\dfrac{2\left(4k\right)^2}{2\cdot4^2}\\ \Leftrightarrow\dfrac{4k^2}{4}=\dfrac{9k^2}{9}=\dfrac{32k^2}{32}=\dfrac{4k^2-9k^2+32k^2}{4-9+32}=\dfrac{108}{27}=4\\ \dfrac{4k^2-9k^2+32k^2}{4-9+32}=4\\ \Rightarrow\dfrac{\left(4-9+32\right)k^2}{4-9+32}=4\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ k=2\Rightarrow\left\{{}\begin{matrix}a=2k=2\cdot2=4\\b=3k=3\cdot2=6\\c=4k=4\cdot2=8\end{matrix}\right.\\ k=-2\Rightarrow\left\{{}\begin{matrix}a=2k=2\cdot\left(-2\right)=-4\\b=3k=3\cdot\left(-2\right)=-6\\c=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
Vậy ...
Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau có :
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{a}{2}=4\\\dfrac{b}{3}=4\\\dfrac{c}{4}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=8\\b=12\\c=16\end{matrix}\right.\)
6.(\(\dfrac{-2}{3}\))+12.\(\dfrac{-2^2}{3}\)+18.\(\dfrac{-2^3}{3}\)
= -4+(-16)+(-48)
=-68
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
Gọi 3 phần lần lượt là a, b, c. Theo đề bài ta có :
$0,2a=3\dfrac{1}{3}b=\dfrac{4}{5}c$
$=>\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c$
$=>\dfrac{a}{5}=\dfrac{10b}{3}=\dfrac{4c}{5}$
$=>\dfrac{a}{5}.15=\dfrac{10b}{3}.15=\dfrac{4c}{5}.15$
$=>3a=50b=12c$
$=>\dfrac{3a}{300}=\dfrac{50b}{300}=\dfrac{12c}{300}$
$=>\dfrac{a}{100}=\dfrac{b}{6}=\dfrac{c}{25}=\dfrac{a+b+c}{100+6+25}=\dfrac{393}{131}=3$ (tính chất dãy tỉ số bằng nhau)
$=>a=3.100=300$
$b=3.6=18$
$c=3.25=75$
Vậy ta chia 393 thành 3 phần là : 300 ; 18 ; 75.
Chúc bạn học tốt ^_^
Tài Nguyễn Tuấn thank you