Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
Giải:
a) ⇔⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
a) \(\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)
\(=\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}.\frac{x^3+y^3}{10x-10y}\)
\(=\frac{3\left(x^2-2xy+y^2\right)}{5\left(x^2-xy+y^2\right)}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{10\left(x-y\right)}\)
\(=\frac{3\left(x^2-2xy+y^2\right)}{5}.\frac{x+y}{10\left(x-y\right)}\)
\(=\frac{3\left(x-y\right)^2}{5}.\frac{x+y}{10\left(x-y\right)}\)
\(=\frac{3\left(x-y\right)}{5}.\frac{x+y}{10}\)
\(=\frac{3x^2-3y^2}{50}\)
c) \(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{y-x}{xy}-\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^2}\)
\(=\frac{2}{y-x}-\frac{x+y}{x-y}\)
\(=\frac{2}{y-x}+\frac{x+y}{y-x}\)
\(=\frac{x+y+2}{y-x}\)