Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)
b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)
c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)
\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)
Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
Câu 1:
\(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)
Câu 2:
\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
Câu 3:
\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)
Câu 4:
Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD
Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
a) \(xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a) xy +y2 - x-y
y(x+y) -(x+y)
(x+y)(y-1)
c) x2 - 4x +3
x2 -3x - x - 3
x(x-3) -(x-3)
(x-3)(x-1)
câu 2
| |||||||||||||||||||||
ĐỂ phép chia hết thì m+12 = 0 => m = -12
có thể đúng cũng có thể sai ,có j sai hoặc ko đúng ib mk nhé
Bài 3 :
a )
\(4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x=0\) or \(x=1\)
b )
|
|||||||||||||||||||||||||||||
1.
a.\(4x^2\left(5x^3-3x+1\right)\)
\(=20x^5-12x^3+4x^2\)
b.\(\left(5x^2-4x\right)\left(x-2\right)\)
\(=5x^3-10x^2-4x^2+8x\)
\(=5x^3-14x^2+8x\)
c.\(\left(x^2-2xy+y^2\right)\left(x-y\right)\)
\(=\left(x-y\right)^2\left(x-y\right)\)
\(=\left(x-y\right)^3\)
2.
a.Bạn xem lại đề câu này nhé!
b.\(x^2-y^2-3x-3y\)
\(=\left(x^2-y^2\right)+\left(-3x-3y\right)\)
\(=\left(x+y\right)\left(x-y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-3\right)\)
3.
a.\(4x^2-4x=0\)
\(4x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy x=0 hoặc x=1.
\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)
(x2 + 2x - y2 + 1) : (x + y + 1)
= { (x2 + 2x + 1) -y2) : (x +y +1)
= { (x +1)2 -y2 } : (x + y+1)
= ( x + 1 - y)( x +1+y) : (x+ 1+y)
= x + 1 - y