Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2(5x3 – x - 1212) = x2. 5x3 + x2 . (-x) + x2 . (-1212)
= 5x5 – x3 – 1212x2
b) (3xy – x2 + y) 2323x2y = 2323x2y . 3xy + 2323x2y . (- x2) + 2323x2y . y
= 2x3y2 – 2323x4y + 2323x2y2
c) (4x3– 5xy + 2x)(- 1212xy) = - 1212xy . 4x3 + (- 1212xy) . (-5xy) + (- 1212xy) . 2x
= -2x4y + 5252x2y2 - x2y
Tìm GTNN với lại câu c mình viết thiếu đề, phải là: 4x2 + 1/ x2 -20 (x>0)
a: \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)
b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)
Ta có (x−y)(x+y)=\(\sqrt{y+1}\)>0(x−y)(x+y)=y+1>0.
Suy ra x>yx>y.
Suy ra x≥1x≥1 nên x+y≥y+1≥1x+y≥y+1≥1.
Mặt khác, x−y>0x−y>0 nên x−y≥1x−y≥1.
Do đó, (x−y)(x+y)≥y+1≥ \(\sqrt{y+1}\) (x−y)(x+y)≥y+1≥y+1.
Dấu "=" \(\Leftrightarrow\) y+1=1;x+y=y+1;x−y=1y+1=1;x+y=y+1;x−y=1.
Tức là x=1;y=0
\(x^3-2x^2-x+2\)
\(=x^2\left(x-2\right)-\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)