Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{x\in Z|\left(x^2-9\right)\left(x^2-7\right)\left(3x+5\right)=0\right\}\)
Giải pt \(\left(x^2-9\right)\left(x^2-7\right)\left(3x+5\right)=0\) \(\left(dk:x\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\x^2-7=0\\3x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\left(tm\right)\\x=\pm\sqrt{7}\left(ktm\right)\\x=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
Vậy \(A=\left\{-3;3\right\}\)
18.
\(\left|\overrightarrow{CB}-\overrightarrow{CA}\right|=\left|\overrightarrow{CB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AB}\right|=AB=a\)
19.
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=\sqrt{AB^2+AD^2}=5\)
20.
Gọi M là trung điểm AC \(\Rightarrow BM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
\(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=\left|-\overrightarrow{BA}-\overrightarrow{BC}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|2\overrightarrow{BM}\right|=2BM=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)
21.
\(\overrightarrow{OB}=\overrightarrow{DO}\Rightarrow\left|\overrightarrow{OA}+\overrightarrow{OB}\right|=\left|\overrightarrow{OA}+\overrightarrow{DO}\right|=\left|\overrightarrow{DA}\right|=AD=a\)
giả sử AI kéo dài cắt BC tại D.
ta có: \(\frac{BD}{CD}=\frac{c}{b}\Rightarrow BD=\frac{c}{b}CD\Leftrightarrow\overrightarrow{DB}=-\frac{c}{b}\overrightarrow{DC}\Leftrightarrow\overrightarrow{DI}+\overrightarrow{IB}=-\frac{c}{b}\left(\overrightarrow{DI}+\overrightarrow{IC}\right)\Leftrightarrow\left(1+\frac{c}{b}\right)\overrightarrow{DI}=-\overrightarrow{IB}-\frac{c}{b}\overrightarrow{IC}\Leftrightarrow\overrightarrow{ID}=\frac{b}{b+c}\overrightarrow{IB}+\frac{c}{b+c}\overrightarrow{IC}\)
tiếp: Xét tam giác ABD có ID/IA = BD/AB= (ac/b+c)/c=a/b+c
=> ID=(a/b+c)IA
=> \(\overrightarrow{ID}=-\frac{a}{b+c}\overrightarrow{IA}\)
Thế vào (1) ta đc:
\(-\frac{a}{b+c}\overrightarrow{IA}=\frac{b}{b+c}\overrightarrow{IB}+\frac{c}{b+c}\overrightarrow{IC}\)
\(\Leftrightarrow\frac{1}{b+c}\left(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right)=0\)
<=> \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\): đpcm
\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)
\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)=2\overrightarrow{MN}\)