Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc \(\Delta\Rightarrow x+5y-1=0\) (1)
Gọi \(M'\left(x';y'\right)\in\Delta'\) là ảnh của \(\Delta\) qua phép tịnh tiến nói trên
\(\Rightarrow\left\{{}\begin{matrix}x'=x+4\\y'=y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-4\\y=y'-2\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow x'-4+5\left(y'-2\right)-1=0\)
\(\Leftrightarrow x'+5y'-15=0\)
Hay ảnh của \(\Delta\) qua phép tịnh tiến nói trên là đường thẳng có pt: \(x+5y-15=0\)
7.
Gọi \(M\left(x;y\right)\in\Delta\)
Gọi \(M'\left(x';y'\right)\in\Delta'\Rightarrow2x'+y'-5=0\) (1)
Đồng thời M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\)
\(\left\{{}\begin{matrix}x'=x-4\\y'=y+2\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow2\left(x-4\right)+1\left(y+2\right)-5=0\)
\(\Leftrightarrow2x+y-11=0\)
Hay phương trình \(\Delta\) có dạng: \(2x+y-11=0\)
1.
\(\left(sinx+1\right)\left(sinx-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx=-1\)
\(\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)
2.
\(sin2x\left(2sinx-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\2sinx-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(sin\left(\dfrac{x+\pi}{5}\right)=-\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x+\pi}{5}=-\dfrac{\pi}{6}+k2\pi\\\dfrac{x+\pi}{5}=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{11\pi}{6}+k10\pi\\x=\dfrac{29\pi}{6}+k10\pi\end{matrix}\right.\)
4.
\(2sin\left(2x-10^0\right)=\sqrt{3}\Rightarrow sin\left(2x-10^0\right)=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-10^0=60^0+k360^0\\2x-10^0=120^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=35^0+k180^0\\x=65^0+k180^0\end{matrix}\right.\)
\(\Rightarrow x=\left\{-145^0;35^0;-115^0;65^0\right\}\) có 4 nghiệm
C3
\(sin\left(\dfrac{x+\Pi}{5}\right)=sin\left(\dfrac{-\pi}{6}\right)\)
<=>\(^{\left[{}\begin{matrix}\dfrac{x+pi}{5}=\dfrac{-pi}{6}+k2pi\\\dfrac{x+pi}{5}=\dfrac{7pi}{6}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{5}=-\dfrac{11pi}{30}+k2pi\\\dfrac{x}{5}=\dfrac{29pi}{30}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11pi}{6}+\dfrac{k2pi}{5}\\x=\dfrac{29pi}{6}+\dfrac{k2pi}{5}\end{matrix}\right.\)
\(tanx=-tan\dfrac{\pi}{5}\)
\(\Leftrightarrow tanx=tan\left(-\dfrac{\pi}{5}\right)\)
\(\Leftrightarrow x=-\dfrac{\pi}{5}+k\pi\)
Mình quên mất, nó nằm trong khoảng (π/2; π) nha, mình xin lỗi
\(tan\left(\dfrac{x}{2}\right)=\sqrt{3}\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi\) (\(k\in Z\))
\(cos^2x=\dfrac{1}{2}\Leftrightarrow2cos^2x-1=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
số đó có dạng abc
{0,1,2,3,4,5,6,7,8,9}
vì là số chẳn nên c có 5 cách chọn {0,2,4,6,8}
a có 8 các chọn vì phải bỏ số 0 và c
b có 8 cách chọn vì phải bỏ đi a và c
vậy có 5*8*8=320 số