Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{15}{21}và\frac{30}{42}\)
Ta có: \(15.42=30.24\left(vì630=630\right)\)
=> \(\frac{15}{21}và\frac{30}{42}\) có thể lập đc tỉ lệ thức.
b, \(\frac{4}{5}:8\) và \(\frac{3}{5}:6\)
Ta có: \(\frac{4}{5}:8=\frac{1}{10}\) và \(\frac{3}{5}:6=\frac{1}{10}\)
Vì : \(\frac{1}{10}=\frac{1}{10}\Rightarrow1.10=10.1\)
Vậy có thể lập đc tỉ lệ thức.
c, Tương tự nên bn tự làm.
10:15 ; \(\dfrac{16}{9}\):\(\dfrac{16}{24}\) ; \(\dfrac{2}{3}\):\(\dfrac{1}{4}\) ; 16:(-4) ; 14:21 ; -5:15 ; 12:(-3) ; -1,2:3,6
10:15=\(\dfrac{2}{3}\) ;\(\dfrac{16}{24}\)=\(\dfrac{2}{3}\) ;16:(-4)=-4 ;14:21=\(\dfrac{2}{3}\) :-5:15=\(\dfrac{-1}{3}\) ;12:(-3)=-4
-1,2:3,6=\(\dfrac{-1}{3}\)
Ta có các tỉ lệ thức: \(\dfrac{10}{15}\)=\(\dfrac{16}{24}\)=\(\dfrac{14}{21}\)=\(\dfrac{2}{3}\) ;\(\dfrac{16}{-4}\)=\(\dfrac{12}{-3}\)=-4 ;\(\dfrac{-5}{15}\)=\(\dfrac{-1,2}{3,6}\)=\(\dfrac{-1}{3}\)
a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất
Có: \(4.\left|3x+7\right|+3\ge3\forall x\)
Dấu "=" xảy ra khi |3x + 7| = 0
=> 3x + 7 = 0
=> 3x = -7
\(\Rightarrow x=\frac{-7}{3}\)
Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10
Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)
b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất
Có: \(8.\left|15x-21\right|+7\ge7\forall x\)
Dấu "=" xảy ra khi |15x - 21| = 0
=> 15x - 21 = 0
=> 15x = 21
\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)
Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)
Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)
c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)
\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)
hay \(C\ge9\)
Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)
Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)
Bài 2:
a: =>x/4=1/8
hay x=1/2
b: \(\Leftrightarrow\dfrac{x}{-5}=\dfrac{11}{6}\)
hay x=-55/6
c: \(\Leftrightarrow\dfrac{-3.5}{x}=\dfrac{4.25}{8}\)
hay x=-112/17
\(a)\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}\)
\(=\dfrac{18}{24}+\dfrac{12}{24}+\left(-\dfrac{5}{24}\right)\)
\(=\dfrac{18+12+\left(-5\right)}{24}\)
\(=\dfrac{25}{24}\)
\(b)\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)
\(=\dfrac{5}{7}.\dfrac{-2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)
\(=\dfrac{5}{7}\left(\dfrac{-2}{13}+\dfrac{-11}{13}+\dfrac{13}{13}\right)\)
\(=\dfrac{5}{7}.0=0\)
\(c)\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)
\(=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}\)
\(=2\dfrac{1}{2}\)
\(d)\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}\)
\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{38}{51}+\dfrac{306}{714}\)
\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{532}{714}+\dfrac{306}{714}\)
\(=\dfrac{1391}{714}\)
a)\(\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}=\dfrac{18}{24}+\dfrac{12}{24}-\dfrac{5}{24}=\dfrac{25}{24}\)
b)\(\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}=\dfrac{5}{7}\left(\dfrac{-2}{13}-\dfrac{11}{13}+1\right)=\dfrac{5}{7}.0=0\)
c)\(\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=2,5\)
d)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}=\dfrac{15}{34}+\left(\dfrac{1}{3}+\dfrac{38}{51}+\dfrac{3}{7}\right)=\dfrac{15}{34}+\dfrac{538}{357}=\dfrac{1391}{714}\)
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
a. = 1/20 + 5 - 1/2
= 101/20 - 1/2
= 91/20
b. = ( 6/15 - 3/5) - ( 7/8 + 2/16) + 3
= -1/5 - 1 + 3
= 9/5
c. = 15/7 . ( 3/5 - 8/5)
= 15/7 . ( -1)
= - 15/7
e. = -14/9 - 3/9
= -17/9
f. = 19/21 . ( 15/17 + 2/17) + 13/21
= 19/21 . 1 + 13/21
= 32/21
g. = 43/12 : 2 + 5/24
= 43/24 + 5/24
= 2