Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
a) \(x^4-x^2-2=0\)
\(\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\left(tm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)
b) \(\left(x+1\right)^4-\left(x^2+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x^2+2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x+1=x^2+2\\x^2+2x+1=-x^2-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x^2+2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(tm\right)\\2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)
c) \(3x^2-2x-8=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
d) \(2x^3-3x^2+3x+8=0\)
\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)
\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
e) \(x^3-0,25x=0\)
\(\Leftrightarrow x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow x\left(x-0,5\right)\left(x+0,5\right)=0\)
\(\Leftrightarrow\)\(x=0\)
hoặc \(x-0,5=0\)
hoặc \(x+0,5=0\)
\(\Leftrightarrow\)\(x=0\)
hoặc \(x=0,5\)
hoặc \(x=-0,5\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;0,5;-0,5\right\}\)
f) \(x^4+2x^3+x^2=0\)
\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)
g) \(x^3-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
h) \(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)
bạn đã học giải pt bậc 2 chưa có công thức bài nào cũng giải đc
a) x^2+3x=0
<=> x(x+3)=0
<=> x=0 hoặc x+3=0
<=> x=0 hoặc x=-3
S={0;-3}
b) x^2-x-42=0
<=> x^2-7x+6x-42=0
<=> x(x-7)+6(x-7)=0
<=> (x-7)(x+6)=0
<=> x-7=0 hoac x+6=0
<=> x=7,x=-6
c) ,d) tương tự
e) 2x^3+3x^2-x-1=0
<=> 2x^3+x^2+2x^2+x-2x-1=0
<=> x^2(2x+1)+x(2x+1)-(2x+1)=0
<=> (2x+1)(x^2+x-1)=0
<=>2x+1=0 hoặc x^2+x-1=0
<=> x=-1/2 ,x=-1+căn5/2,x=-1-căn5/2
a) 1 + x = 0
b) x + x2 = 0
c) 1 - 2t = 0
d) 3y = 0
e) 0x - 3 = 0
f) (x2 + 1)(x - 1) = 0
g) 0,5x - 3,5x = 0
h) -2x2 + 5x = 0
a, 1 + x = 0
Ta có: a = 1; b = 1 với a \(\ne\) 0
nên ta có: 1x + 1 = 0 (a \(\ne\) 0)
Vậy 1 + x = 0 là phương trình bậc nhất một ẩn
b, x + x2 = 0
Phương trình bậc nhất một ẩn có dạng ax + b = 0 với a \(\ne\) 0 nên:
\(\Rightarrow\) x + x2 = 0 ko là phương trình bậc nhất một ẩn
c, 1 - 2t = 0
\(\Leftrightarrow\) t = \(\frac{1}{2}\)
Có a = -2; b = 1 với a \(\ne\) 0
Vậy 1 - 2t = 0 là phương trình bậc nhất một ẩn
d, 3y = 0
\(\Leftrightarrow\) 3y + 0 = 0 với a = 3; b = 0 với a \(\ne\) 0
Vậy 3y = 0 là phương trình bậc nhất một ẩn
e, 0x - 3 = 0
Ta có: a = 0; b = -3 và a = 0
Vậy 0x - 3 = 0 ko là phương trình bậc nhất một ẩn
f, (x2 + 1)(x - 1) = 0
\(\Leftrightarrow\) x3 - x2 + x - 1 = 0
\(\Leftrightarrow\) x(x2 - x + 1) - 1 = 0
Ta có a = x2 - x + 1 ko phải là số đã cho và b = -1
Vậy (x2 + 1)(x - 1) = 0 ko là phương trình bậc nhất một ẩn
g, 0,5x - 3,5x = 0
\(\Leftrightarrow\) x(0,5 - 3,5) = 0
\(\Leftrightarrow\) -3x = 0
\(\Leftrightarrow\) -3x + 0 = 0 có a = -3 và b = 0 với a \(\ne\) 0
Vậy 0,5x - 3,5x = 0 là phương trình bậc nhất một ẩn
h, -2x2 + 5x = 0
\(\Leftrightarrow\) x(-2x + 5) = 0
\(\Leftrightarrow\) x(-2x + 5) + 0 = 0
Ta có: a = -2x + 5 ko phải là số đã cho
Vậy -2x2 + 5x = 0 ko là phương trình bậc nhất một ẩn
Chúc bn học tốt!!