\(|x^2+2x|+|y^2-9|=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Vì \(\left|x^2+2x\right|\ge0\) và \(\left|y^2-9\right|\ge0\)

=> Dấu = xảy ra khi : \(\hept{\begin{cases}x^2-2x=0\\y^2-9=0\end{cases}}\) => \(\hept{\begin{cases}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{cases}}\) => \(\hept{\begin{cases}x=\left\{0;2\right\}\\y=\left\{3;-3\right\}\end{cases}}\)

8 tháng 3 2018

Help me!

27 tháng 3 2017

\(x^2+2x+y^2-9=0\)

\(\Leftrightarrow\left(x+1\right)^2+y^2=10\)

Ta thấy VT là tổng 2 số chính phương nên ta tách VT thành tổng 2 số chính phương 

Mà ta có: 10 = 1 + 9 = 9 + 1

\(\Rightarrow\)((x + 1)2, y2) = (1, 9; 9, 1)

Thế vào giải tiếp sẽ ra

27 tháng 3 2017

bằng 1 cặp

9 tháng 4 2016

(0;3);(0;-3);(-2;3);(-2;-3)

5 tháng 3 2015

b)|x^2+2x| + |y^2-9| = 0 
|x^2+2x| > hoặc =0

|y^2-9|   > hoặc =0
x^2+2x=0 và y^2-9=0
suy ra (x;y)=(0;3)(0;-3)(-2;3)(-2;-3)

4 tháng 3 2015

bài này lớp 6 như em làm được

28 tháng 11 2016

a) \(x.\left(y+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)

b) \(\left(x-2\right).y=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=0\end{cases}}}\)

c) \(\left(x+2\right)^2+\left(y-3\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

28 tháng 11 2016

a, x.(y+1)=0

=> x=0

hoặc y+1=0=> y=-1

b,(x-2).y=0

=> x-2=0=> x=2

hoặc y=0

c,nhận xét ta thấy (x+2)2 >=0

và (y-3)2>= 0

nên (x+2)2+(y-3)2>=0

dấu bằng xảy ra khi và chỉ khi

x+2=0=> x=-2

và y-3=0=> y=3

26 tháng 4 2017

Bạn giải được bài này chưa?

22 tháng 9 2015

1. \(\frac{x}{y}=\frac{7}{17}\)

3. Có 6 cặp

4. 0 có cặp nào hết

Câu 2 mình không biết nha. Thông cảm

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha