Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\widehat {{A_1}} = \widehat {{B_1}}( = 124^\circ )\). Mà 2 góc này ở vị trí so le trong nên z // t
b) Vì \(\widehat {{D_1}}= \widehat {{C_1}} (= 90^\circ) \)
Mà 2 góc này ở vị trí đồng vị nên m // n
c) Vì \(\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \) ( 2 góc kề bù) nên \(110^\circ + \widehat {{E_2}} = 180^\circ \Rightarrow \widehat {{E_2}} = 180^\circ - 110^\circ = 70^\circ \)
Vì \(\widehat {{E_2}} = \widehat {{G_1}}( = 70^\circ )\). Mà 2 góc này ở vị trí so le trong nên x // y
d) Vì \(\widehat {{K_1}} + \widehat {{K_2}} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {{K_1}} + 56^\circ = 180^\circ \Rightarrow \widehat {{K_1}} = 180^\circ - 56^\circ = 124^\circ \)
Vì \(\widehat {{H_1}} = \widehat {{K_1}}( = 124^\circ )\). Mà 2 góc này ở vị trí so le trong nên u // v
Xét hình a: a // b vì đường thẳng c cắt 2 đường thẳng a, b và tạo thành một cặp góc so le trong bằng nhau
Xét hình b: không có cặp đường thẳng nào song song vì đường thẳng g cắt 2 đường thẳng d, e và không tạo thành một cặp góc so le trong bằng nhau ( 90 \(^\circ \) 80 \(^\circ \))
Xét hình c: m // n vì đường thẳng p cắt 2 đường thẳng m, n và tạo thành một cặp góc đồng vị bằng nhau
b
AH vuông góc với BC
BC song song với EK
=>AH vuông góc với EK
c, có ^DAB = ^FAC = 90
^DAB + ^BAC = ^DAC
^FAC + ^BAC = ^FAB
=> ^DAC = ^FAB
xét tg DAC và tg BAF có : AD = AB (gt) và AF = AC (Gt)
=> tg DAC = tg BAF (C-g-c)
=> BF = DC (đn)
*) Hình 8
Ta có:
∠C + ∠MNC = 65⁰ + 115⁰
= 180⁰
Mà ∠C và ∠MNC là hai góc trong cùng phía
⇒ MN // BC
*) Hình 9
Ta có:
∠C + ∠NMC = 30⁰ + 150⁰
= 180⁰
Mà ∠C và ∠NMC là hai góc trong cùng phía
⇒ MN // BC
*) Hình 10
Ta có:
∠ANx + ∠ANM = 180⁰ (kề bù)
⇒ ∠ANM = 180⁰ - ∠ANx
= 180⁰ - 110⁰
= 70⁰
⇒ ∠ANM = ∠NBC = 70⁰
Mà ∠ANM và ∠NBC là hai góc đồng vị
⇒ MN // BC
*) Hình 11
Ta có:
∠x'Az + ∠x'AB = 180⁰ (kề bù)
⇒ ∠x'AB = 180⁰ - ∠x'Az
= 110⁰ - 130⁰
= 50⁰
⇒ ∠x'AB = ∠y'Bz' = 50⁰
Mà ∠x'AB và ∠x'Az' là hai góc đồng vị
⇒ xx' // yy'
Bài 8:
Ta có: \(a//b\Rightarrow\widehat{D_1}=\widehat{DAB}\) (đồng vị)
Mà: \(\widehat{DAB}=90^o\)
\(\Rightarrow\widehat{D_1}=90^o\)
Và: \(a//b\Rightarrow\widehat{DCB}=\widehat{B_1}\) (so le trong)
Mà: \(\widehat{DCB}=130^o\)
\(\Rightarrow\widehat{B_1}=130^o\)