K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

Trong toán học, một tập hợp hữu hạn là một tập hợp có một số hữu hạn các phần tử. Một cách không chính thức, một tập hữu hạn là một tập hợp mà có thể đếm và có thể kết thúc việc đếm. Ví dụ,

{\displaystyle \{2,4,6,8,10\}\,\!}

là một tập hợp hữu hạn có 5 phần tử. Số phần tử của một tập hợp hữu hạn là một số tự nhiên (một số nguyên không âm) và được gọi là lực lượng của tập hợp đó. Một tập hợp mà không hữu hạn được gọi là tập hợp vô hạn. Ví dụ, tập hợp tất cả các số nguyên dương là vô hạn:

{\displaystyle \{1,2,3,\ldots \}.}

Tập hợp hữu hạn đặc biệt quan trọng trong toán học tổ hợp, môn toán học nghiên cứu về phép đếm. Nhiều bài toán liên quan đến các tập hữu hạn dựa vào nguyên lý ngăn kéo Dirichlet, chỉ ra rằng không thể tồn tại một đơn ánh từ một tập hợp hữu hạn lớn hơn vào một tập hợp hữu hạn nhỏ hơn.

31 tháng 7 2021

coppy mình không hieerur đâu 

Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4...
Đọc tiếp

Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).

Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S. 

Đề toán yêu cầu:

a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.

b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.

0
AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.

Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.

Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$

Do đó, khi gặp phải pt:

$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:

$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$

$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$

Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:

TH1: $x\geq 1$

TH2: $-1\leq x< 1$

TH3: $x< -1$

31 tháng 7 2021

Em cảm ơn chị nhiều ạ!! 

 * Đồ thị hàm số, hàm số, đồ thị. Mấy cái này khác nhau như thế nào vậy ạ? Lấy ví dụ giúp mình nhá! *Tìm tọa độ giao điểm của 2 đồ thị + Tọa độ giao điểm của 2 đồ thị nghĩa là như nào ạ?+ Nếu làm theo cách  vẽ đồ thị thì đối với trường hợp nào. Và cách giải theo vẽ đồ thị hàm số như nào ạ? + Với nhiều hàm số trở lên thì làm như nào ạ? + Hoành độ giao...
Đọc tiếp

 

* Đồ thị hàm số, hàm số, đồ thị. Mấy cái này khác nhau như thế nào vậy ạ? Lấy ví dụ giúp mình nhá! 

*Tìm tọa độ giao điểm của 2 đồ thị 

+ Tọa độ giao điểm của 2 đồ thị nghĩa là như nào ạ?

+ Nếu làm theo cách  vẽ đồ thị thì đối với trường hợp nào. Và cách giải theo vẽ đồ thị hàm số như nào ạ? 

+ Với nhiều hàm số trở lên thì làm như nào ạ? 

+ Hoành độ giao điểm của 2 đồ thị là nghiệm của phương trình. Tại sao là hoành độ giao điểm mà không phải tung độ giao điểm ạ? 

+ Ví dụ y= -2x+3 (d1). Mình gọi (d1) là đường thẳng. Đường thẳng này khác với hàm số như nào ạ. Ví dụ thay x = 2 vào (d1) thì không đung mà phải nói thay x = 2 vào y = -2x+3 thì mới đúng ạ? Mà mình đặt hàm số đó là đường thẳng (d1) vậy tại sao khác nhau như nào ạ? 

 

 

 

3
AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

Nói đơn giản thế này. Khi đề cho: Cho đồ thị hàm số $y=x+2$

- Hàm số: chính là $y=x+2$, biểu diễn mối quan hệ giữa biến $x$ và biến $y$. Hàm số hiểu đơn giản giống như phép biểu diễn mối quan hệ giữa hai biến.

- Đồ thị hàm số (hay đồ thị): Khi có hàm số rồi, người ta muốn biểu diễn nó trên mặt phẳng tọa độ ra được 1 hình thù nào đó thì đó là đồ thị hàm số. Ví dụ, đths $y=x+2$ có dạng như thế này:

 


 

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

- Tọa độ giao điểm của hai đồ thị: Khi ta vẽ được đồ thị trên mặt phẳng tọa độ, 2 đồ thị đó giao nhau ở vị trí nào thì đó chính là tọa độ giao điểm. Ví dụ, trên mp tọa độ ta có 2 đồ thị $y=-2x+3$ và $y=x+6$ chả hạn. Điểm $A$, có tọa độ $(-1,5)$ chính là giao điểm. Như vậy, $(-1,5)$ là tọa độ giao điểm.

- Nhìn hình vẽ của đồ thị chỉ giúp ta có cái nhìn trực quan hơn. Khi muốn tìm giao điểm của 2 đồ thị hàm số, người ta thường dùng hàm số để tìm cho nhanh, vì hàm số biểu diễn mối quan hệ giữa hai biến một cách "số hóa" hơn.

- Với nhiều hàm số trở lên thì ta cứ xét từng cặp 1 thôi. 

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số...
Đọc tiếp

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-

có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])

có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:

mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số phần tử tương ứng có trong K và mod).

có tập hợp dãy số nguyên int (int[1], int[2], int[3], ..., int[n]) với mỗi phần tử trong tập hợp int đc tính theo công thức:

mod[i] = k[i] / x ( / là phép toán chia lấy phần nguyên, i là chỉ số phần tử tương ứng có trong K và int).

smod là tổng của các phần tử có trong tập hợp mod ( smod = mod[1] + mod[2] + mod[3] + ... + mod[n] )

sint là à tổng của các phần tử có trong tập hợp int (sint = int[1] + int[2] + int[3] +  ... + int[n])

T đc tính theo công thức sau : \(T = smod - sint - 12 * n\) (n là số phần tử của K như ở trên).

Ví dụ: có x = 922, tập hợp K có : K[1] = 3572 , K[2] = 3427 , K[3] = 7312 thì ta có:

mod[1] = 806, mod[2] = 661, mod[3] = 858

int[1] = 3, int[2] = 3, int[3] = 7

từ đó có smod = 2325 và sint = 13

K có 3 phần tử nên n = 3, từ đó có T =

T = 2325 - 13 - 12*3 = 2276

Giờ em đã có T và tập hợp K, tức là đã biết T và K[1], K[2], K[3], ..., K[n], lập công thức tính x

Em phải làm thế nào ạ ?

 

0
23 tháng 8 2021

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

23 tháng 8 2021

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

11 tháng 8 2016
Đề có nhầm không vậy Từ 0 đến 50 có 51 phần tử nhưng mà không có 2 số nào mà tổng bằng 101 nhe bạn
11 tháng 8 2016
Câu b/ ta dễ dàng chia thành 50 bộ thỏa mãn hiệu của 2 số là 50 gọi nhóm từ 0 đến 49 là a nhóm còn lại là b khi ta chọn nhẫn nhiên 51 số thì sẽ có ít nhất 1 số không thuộc nhóm các số còn lại hay nói cách khác là tồn tại ít nhất 2 số hơn kém nhau 50 đơn vị
18 tháng 4 2018

chịu mình mới học lớp 6