K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

Nếu mẫu là \(\left(x+3\right)\left(x-3\right)\) thì điều kiện xác định sẽ là:

\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

- Lưu ý là cả \(x+3\) và \(x-3\) đều phải khác 0

1 tháng 7 2021

Bạn ơi có phải giống bằng 0 ạ 

12 tháng 8 2021

Akai Haruma

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Em không nêu ra yêu cầu và các điều kiện liên quan của đề bài thì làm sao mn giúp em được?

12 tháng 7 2021

Đề ví dụTimf x không âm biết căn (x-1)=...... Đề bải x không âm thì chỉ cần x>=0 thôi chứ ạ.  Chỉ rõ chio mình hiểu nhá

Vì khi lấy ĐKXĐ thì lấy cả biểu thức trong căn mới đúng

Thì ĐKXĐ là phải lấy tất cả các biểu thức trong căn phải không âm

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Bạn nhớ rằng $\sqrt{a}$ xác định khi mà $a\geq 0$, hay $a$ không âm.

Cho $a=x-1$ thì để $\sqrt{x-1}$ xác định thì $x-1\geq 0$ 

$\Leftrightarrow x\geq 1$

Chỉ mình ạ! Bài 1: Ví dụ: Cho A = 0, 1, 2, 3, 4 lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau là số lẻ* Đầu tiên gọi 4 chữ số đó là \(\overline{abcd}\)  rồi . Bắt đầu đi tìm từng cách chọn. Nếu mà làm như thế này: chọn d xong chuyển sang a rồi đến b tiếp đến c thì là có kết quả đúng. Nhưng mà Nếu xét lẫn lộn thích cái nào trước thì chọn trước rồi tìm ra cách chọn thì mình thử có cais không ra kết...
Đọc tiếp

Chỉ mình ạ! 

Bài 1: 

Ví dụ: Cho A = 0, 1, 2, 3, 4 lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau là số lẻ

* Đầu tiên gọi 4 chữ số đó là \(\overline{abcd}\)  rồi . Bắt đầu đi tìm từng cách chọn. Nếu mà làm như thế này: chọn d xong chuyển sang a rồi đến b tiếp đến c thì là có kết quả đúng. Nhưng mà Nếu xét lẫn lộn thích cái nào trước thì chọn trước rồi tìm ra cách chọn thì mình thử có cais không ra kết quả ví dụ chọn d rồi tớ c,b,a hoặc không theo một trình tự, vậy là như thế nào ạ? Chỉ mình rõ chi tiết nhá! 

* Mình có xem giảng qua nhưng mình mới nghe qua: ví dụ 18 bạn nữ và 15 bạn nam. Hỏi có bao nhiêu cách chọn ra 1 bạn nữ, 1 bạn nam. Thì người ta có nói 1 bạn nữ có 18 cách chọn, 1 bạn nam có 15 cách chọn. Thì cứ 1 bạn nữ ta lại có 1 cách chọn bạm nam( có phải 1 bạn nữ ta có thể chọn ra bạn nam A hoặc bạn nam B, hoặc vvv. Theo mình hiểu là như vậy). Chỉ mình câu này hiểu như nào ạ:  cứ 1 bạn nữ ta lại có 1 cách chọn bạm nam.

Bài 2: Ví dụ: Trong 1 sân vui chơi có 10 bạn chơi cầu lông, 15 bạn chơi đá bóng, trong đó có 5 bạn chơi cả cầu lông và đá bóng, còn lại 4 bạn không chời gì chả hạn. 

* Ở đây:  trong đó có 5 bạn chơi cả cầu lông và đá bóng có phải là: có 10 bạn chơi cầu lông, 15 bạn chơi đá bóng thì trong đó có 5 bạn chơi cả hai môn đúng không ạ.? 5 bạn chơi cả hai môn này là nằm trong 10 bạn chơi cầu lông và 15 bạn chơi đá bóng à? Nhưng mà ở đây lại tách riêng ra chứ không lẫn cả cầu lông với đá bóng thì 5 bạn chơi cả hai môn đó có thế là 1 bạn bên đá bóng hoặc 1 bạn bên cầu lông à? Hoặc 5 bạn bên cầu lông hoặc 5 bạn bên đá bóng?5 bạn chơi cả hai môn này là như thế nào, theo các bạn nghĩ? 

Các bạn chỉ mình đầy đủ từng hoa thị, từng dấu hỏi chấm với nhé! 

2
AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 1:

** Nếu chị nhớ không nhầm thì dạng bài như thế này đến lớp 11 em mới được học mà??? Tuy nhiên, nếu em quan tâm thì chị có thể giải đáp sơ qua như sau:

Việc chọn thứ tự các số để xét nó là linh hoạt và không cố định. Tùy thuộc vào tính chất bài toán mà ta có cách chọn riêng.

Thông thường, việc chọn sẽ bắt nguồn từ những chữ số có tính chất đặc biệt (liên quan đến bài nhất), sau đó mới xét đến những cái sau. Cái nào càng bớt quan trọng thì càng xét sau.

Đi vào bài toán 1 chả hạn, vì sao phải xét d trước? Vì đề nó cho yêu cầu số lẻ, nên ta phải quan tâm đến cái đặc biệt là số cuối

Tiếp theo vì sao nên xét a? Vì a có tính chất đặc biệt thứ hai, a chỉ có thể nhận các giá trị khác 0

Cuối cùng mới đến những số b,c (không có gì đặc biệt)

-------------------------

Bài nam, nữ: Đề bài hỏi có bao nhiêu cách chọn 1 bạn nữ, 1 bạn nam thì em hiểu đơn giản là: có 18 bạn nữ nên có 18 cách chọn bạn nữ (đương nhiên). Nam cũng vậy.

"Cứ 1 bạn nữ lại có 1 cách chọn bạn nam"??? Cứ 1 bạn nữ ta lại có 15 cách chọn bạn nam chứ?

Giả sử em chọn ra bạn nữ U1 chả hạn, thì để ghép với U1 em có thể có 15 cách chọn bạn nam là A1, A2,...,A15

 

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 2:

Ý em hiểu đúng rồi. 5 bạn chơi cả cầu lông và bóng đá này nằm cả trong nhóm chơi cầu lông và bóng đá.

Ví dụ:

A là nhóm chơi cầu lông 

B là nhóm chơi bóng đá

Nhóm A có thể bao gồm người chỉ chơi cầu lông và chơi cả 2 loại cầu lông, bóng đá. Nhóm B cũng vậy.  

Khi nói em nằm trong trong top 5 bạn chơi cả cầu lông và bóng đá, thì bản thân em chơi cả trong nhóm 10 bạn cầu lông lẫn 15 bạn bóng đá.

Nói tóm gọn lại, 5 bạn này đồng thời cùng thuộc cả 2 nhóm cầu lông, bóng đá.

 

6 tháng 5 2017

Minh lam the nay : B= -3(X^2 - 2X + 5 )=-3(X-1)^2 -12 >= -12 . dau = xra khi X =1

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Tại sao không giải ra $\sqrt{P}$ và $\sqrt{P}$?

Em đã có $P$ rồi, nhưng với $\sqrt{P}$, em làm sao rút gọn được khi mà $P$ đã khá gọn rồi. Cũng chẳng có giá trị nào của $x$ để tính cụ thể $P, \sqrt{P}$ rồi đi so sánh. Vì vậy cách này không khả thi.

Vậy thì phải tìm hướng khác. Muốn so sánh 2 số, ta xét hiệu hai số đó.

$P-\sqrt{P}=\sqrt{P}(\sqrt{P}-1)$

Rõ ràng $\sqrt{P}$ đã dương rồi, giờ ta phải xem xét xem $\sqrt{P}-1$ âm hay dương, hay $P$ có lớn hơn 1 không 

Đó là lý do vì sao bài giải như trên.

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Còn câu hỏi khi nào giải ra từng cái $P$ và $\sqrt{P}$, thì đó là khi đề cho $x=2$ chả hạn, so sánh $P$ và $\sqrt{P}$.

Nhưg hầu như sẽ chẳng có đề nào ra kiểu vậy, mà đa số lợi dụng tính chất của phân thức đó để so sánh (ví dụ như trong bài tính chất nổi bật là $P>1$) cho nhanh. Đó là cái hay của đề bài.

Không đổi dấu nhé bạn

11 tháng 7 2021

Phân tích rõ một chút nhé : 

-  Căn bậc 2 của số x (bắt buộc là số x phải >=0 ) là \(\sqrt{x},-\sqrt{x}\)

Thì căn bậc 2 số học của x là \(\sqrt{x}\)(do\(\sqrt{x}\ge0\)
 -   Đối với trường hợp căn bậc 2 số học của x2 thì là |x|

Chắc chắn là cả căn rồi bạn

Bạn chỉ cần hiểu là căn bậc hai số học của là một số x sao cho \(x^2=a\) và \(x\ge0\) thôi

13 tháng 7 2021

Thế bạn ơi