Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Làm câu 1 nhé :
Áp dụng BĐT Cô si ta có :
\(a^6+a^6+a^6+a^6+a^6+b^6\ge6\sqrt[6]{a^6a^6a^6a^6a^6b^6}=6a^5b\) ( 1 )
Tiếp tục dùng Cô si ta có :
\(a^6+b^6+b^6+b^6+b^6+b^6\ge6\sqrt[6]{a^6b^6b^6b^6b^6b^6}=6ab^5\) ( 2)
Cộng từng vế của (1) và (2) ta có :
\(6\left(a^6+b^6\right)\ge6\left(a^5b+ab^5\right)\)
\(\Rightarrow a^6+b^6\ge a^5b+ab^5\)
=>ĐPCM
Câu 2:
Giải:
Ta có: \(A=\dfrac{2x^2+4x+13}{x^2+2x+6}=\dfrac{2\left(x^2+2x+6\right)+1}{x^2+2x+6}=2+\dfrac{1}{x^2+2x+6}\)
\(=2+\dfrac{1}{\left(x+1\right)^2+5}\)
Vì \(\left(x+1\right)^2+5\ge0\) nên để A lớn nhất thì \(\dfrac{1}{\left(x+1\right)^2+5}\) lớn nhất thì \(\left(x+1\right)^2+5\) nhỏ nhất
Ta có: \(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+5\ge5\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}=0,2\)
\(\Rightarrow A=2+\dfrac{1}{\left(x+1\right)^2+5}\le2+0,2=2,2\)
Dấu " = " xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy \(MAX_A=2,2\) khi x = -1