Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé.
a) Xét tam giác AMB và tam giác DMC có: MB = MC (gt) ; góc AMB = góc DMC (2 góc đối đỉnh) ; AM = MD (gt)
=> tam giác AMB = tam giác DMC (c.g.c) (đpcm)
b) Vì AH vuông góc BC tại H (gt) (*) nên góc AHM = góc EHM = 90o (định nghĩa).
Xét tam giác HMA và tam giác HME có: chung HM ; góc AHM = góc EHM (cmt) ; HA = HE (gt)
=> tam giác HMA = tam giác HME (c.g.c) (1)
=> MA = ME (2 cạnh tương ứng) mà MA = MD (gt) nên ME = MD.
c) Vì ME = MD nên tam giác MDE cân tại M. => góc MED = góc MDE (t/c) (2)
Từ (1) => góc MAH = góc MEH (3)
Từ (2) và (3) => góc DEA = góc DAE + góc ADE => góc DEA = 90o
=> DE vuông góc AH. (**)
Từ (*) và (**) => DE // BC
a ) Xét tam giác AMB và tam giác NMC có :
AM = MN ( gt )
Góc AMB = góc NMC ( đối đỉnh )
BM = MC ( vì AM là đường trung tuyến của BC )
=> Tam giác AMB = Tam giác NMC ( c.g.c )
=> Góc ABM = góc NCM ( 2 góc tương ứng )
Mà góc ABM = góc NCM so le trong
=> CN // AB
b ) Xét tam giác ABC và tam giác NCB có :
AB = NC ( tam giác AMB = tam giác NMC mà cạnh AB và NC là 2 cạnh tương ứng )
Góc ABC = góc NCB ( vì tam giác AMB = tam giác NMC mà góc ABC và góc NCB là 2 góc tương ứng )
AB là cạnh chung
=> Tam giác ABC = Tam giác NCB ( c.g.c )
a ) Xét \(\Delta\)MAB và \(\Delta\)MDC có :
- MA = MD ( giả thiết )
- Góc AMB = Góc DMC ( đối đỉnh )
- BM = MC ( vì M là trung điểm BC )
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MDC ( c - g - c )
\(\Rightarrow\)AB = CD ( 2 cạnh tương ứng )
b ) Xét \(\Delta\)ABC và \(\Delta\)DCB có :
- AB = CD ( chứng minh trên )
- BC : cạnh chung
- Góc ABC = Góc DCB ( \(\Delta\)MAB = \(\Delta\)MDC )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DCB ( c - g - c )
\(\Rightarrow\)BÂC = Góc CDB = 90° ( 2 góc tương ứng )
c ) Xét \(\Delta\)BAE có : BH là đường cao, đồng thời cũng là trung tuyến.
\(\Rightarrow\)\(\Delta\)BAE cân tại B
\(\Rightarrow\)AB = BE
Mà AB = CD ( chứng minh trên )
\(\Rightarrow\)BE = CD
a) Xét tam giác AMB và tam giác NMC có:
AM=MN (gt)
Góc AMB=góc NMC (đối đỉnh)
BM=MC(vì AM là đường trung tuyến của BC)
=> Tam giác AMB = tam giác NMC (c.g.c) => góc ABM=góc NCM ( 2 góc tương ứng )
mà góc ABM và góc NCM so le trong => CN//AB
b) Xét tam giác ABC và tam giác NCB có:
AB=NC (\(\Delta AMB=\Delta NMC\) mà cạnh AB và NC là 2 cạnh tương ứng)
Góc ABC = góc NCB ( \(\Delta AMB=\Delta NMC\) mà góc ABC và góc NCB là 2 góc tương ứng)
AB là cạnh chung
=> Tam giác ABC và tam giác NCB (c.g.c)
c) bạn tham khảo câu trả lời của mình ở đây: https://olm.vn/hoi-dap/question/827711.html
SAI ĐỀ TRÊN TIA MA LẤY D SAO CHO MA = MD
lê tự minh quang , trên tia AM lấy D sao cho AM=MD cũng được nhé ! Không tin thì thử vẽ hình xem !