K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

\(1,x=9\Rightarrow A=\dfrac{2\sqrt{9}+1}{\sqrt{9}}=\dfrac{2.3+1}{3}=\dfrac{7}{3}\)

\(2,B=\dfrac{x-3\sqrt{x}+4}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\left(dk:x>0,x\ne4\right)\\ =\dfrac{x-3\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{x-3\sqrt{x}+4-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

\(3,P=\dfrac{B}{A}=\dfrac{\sqrt{x}-2}{\sqrt{x}}:\dfrac{2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\)

Ta có : \(\left|P\right|+P=0\Leftrightarrow\left|P\right|=-P\)

\(TH_1:x\ge4\\ \dfrac{\sqrt{x}-2}{2\sqrt{x}+1}=-\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\Leftrightarrow\dfrac{2\left(\sqrt{x}-2\right)}{2\sqrt{x}+1}=0\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\left(tm\right)\)

\(TH_2:x< 4\\ -\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}=-\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\left(LD\right)\)

Vậy \(x=4\) thì thỏa mãn đề bài.

 

\(P=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{x-9}\)

\(=\dfrac{x-\sqrt{x}-6}{x-9}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{x-9}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

4:

a: P>4/5

=>P-4/5>0

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{4}{5}>0\)

=>\(\dfrac{5\sqrt{x}+10-4\sqrt{x}-12}{5\sqrt{x}+15}>0\)

=>\(\sqrt{x}-2>0\)

=>x>4

b: \(P>\dfrac{2\sqrt{x}}{5}\)

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2\sqrt{x}}{5}>0\)

=>\(\dfrac{5\sqrt{x}+10-2x-6\sqrt{x}}{5\sqrt{x}+15}>0\)

=>\(-2x-\sqrt{x}+10>0\)

=>\(-2x-5\sqrt{x}+4\sqrt{x}+10>0\)

=>\(\left(2\sqrt{x}+5\right)\left(-\sqrt{x}+2\right)>0\)

=>\(-\sqrt{x}+2>0\)

=>0<=x<4

5:

a: \(P-\dfrac{1}{2}=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{1}{2}\)

\(=\dfrac{2\sqrt{x}+4-\sqrt{x}-3}{2\sqrt{x}+6}=\dfrac{\sqrt{x}+1}{2\sqrt{x}+6}>0\)

=>P>1/2

b: \(P-1=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-1=\dfrac{\sqrt{x}+2-\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\dfrac{-1}{\sqrt{x}+3}< 0\)

\(P^2-P=P\left(P-1\right)\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\cdot\dfrac{-1}{\sqrt{x}+3}< 0\)

=>P^2<P

=>P>P^2

 

NV
30 tháng 1 2022

\(\Rightarrow\left\{{}\begin{matrix}x+my=m+1\\m^2x+my=2m^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+my=m+1\\\left(m^2-1\right)x=2m^2-m-1\end{matrix}\right.\)

Phương trình có nghiệm duy nhất khi \(m^2-1\ne0\Rightarrow m\ne\pm1\)

Khi đó ta có: \(x=\dfrac{2m^2-m-1}{m^2-1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{2m+1}{m+1}\)

\(\Rightarrow y=2m-mx=\dfrac{m}{m+1}\)

Để  \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}\ge2\\\dfrac{m}{m+1}\ge1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{-1}{m+1}\ge0\\\dfrac{-1}{m+1}\ge0\end{matrix}\right.\)

\(\Rightarrow m+1< 0\Rightarrow m< -1\)

22 tháng 10 2021

Bài 1: 

a: \(A=2\sqrt{3}-\sqrt{27}+\sqrt{4-2\sqrt{3}}\)

\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}-1\)

=-1

22 tháng 10 2021

đọc kĩ đề , chỉ cần làm câu 4 ý b thôi

 

15 tháng 12 2023

a: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại trung điểm của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

b: Ta có:ΔOAC cân tại O

mà OH là đường cao

nên OH là đường cao và OH là phân giác của góc COA

=>OH\(\perp\)AC

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác CHOI có \(\widehat{CHO}=\widehat{CIO}=\widehat{HCI}=90^0\)

nên CHOI là hình chữ nhật

c: ta có: CHOI là hình chữ nhật

=>\(\widehat{HOI}=90^0\)

=>\(\widehat{MON}=90^0\)

=>ΔMON vuông tại O

Xét ΔOAN và ΔOCN có

OA=OC

\(\widehat{AON}=\widehat{CON}\)

ON chung

Do đó: ΔOAN=ΔOCN

=>NA=NC

Xét ΔONM vuông tại O có OC là đường cao

nên \(CN\cdot CM=OC^2\)

=>\(AN\cdot BM=\left(\dfrac{AB}{2}\right)^2=\dfrac{AB^2}{4}\)

17 tháng 9 2021

\(\sqrt{9x+9}-2\sqrt{\dfrac{x+1}{4}}=4\left(đk:x\ge-1\right)\)

\(\Leftrightarrow3\sqrt{x+1}-\sqrt{x+1}=4\)

\(\Leftrightarrow2\sqrt{x+1}=4\)

\(\Leftrightarrow\sqrt{x+1}=2\Leftrightarrow x+1=4\Leftrightarrow x=3\left(tm\right)\)

17 tháng 9 2021

Bài 2:

e) \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=\sqrt{x-2}-12\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{4}.\sqrt{x-2}-12.\sqrt{\dfrac{1}{9}}.\sqrt{x-2}=\sqrt{x-2}-12\)

\(\Leftrightarrow2\sqrt{x-2}-4\sqrt{x-2}=\sqrt{x-2}-12\)

\(\Leftrightarrow3\sqrt{x-2}=12\)

\(\Leftrightarrow\sqrt{x-2}=4\)

\(\Leftrightarrow x-2=16\Leftrightarrow x=18\left(tm\right)\)

17 tháng 9 2021

Cảm ơn bạn