
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Ta có :
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
Mà\(x-1=x-1\)
\(\Rightarrow x+2=x+4\)
\(\Rightarrow x-x=4-2\)
\(\Rightarrow x-x=2\) (vô lí)
Vậy ko tìm x thỏa mãn theo yêu cầu
+, Xét trường hợp \(x-1=-1;x-1=0;x-1=1\)
thì với mọi giá trị của \(x\in R\) ta luôn có
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
+, Xét trường hợp \(x-1\ne-1;x-1\ne0;x-1\ne1\)
thì \(x+2=x+4\)
\(\Rightarrow x-x=4-2\Rightarrow0x=2\)
\(\rightarrow\) Loại
Vậy.........
Chúc bạn học tốt!!!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

\(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}\)
\(\Rightarrow\frac{1}{3}:x=\frac{9}{15}-\frac{10}{15}\)
\(\Rightarrow\frac{1}{3}:x=\frac{-1}{15}\)
\(\Rightarrow x=\frac{1}{3}:\frac{-1}{15}\)
\(\Rightarrow x=\frac{1}{3}.\frac{-15}{1}\)
\(\Rightarrow x=-5\)
Vậy \(x=-5\)

Áp dụng tc dãy tỉ:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}\)
\(\frac{x}{7}=\frac{y}{13}\) và x+y=40
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
=>x=14
y=36
vậy x=14
y=36
mai anh em ta gặp nhau có gì k hiểu hỏi anh nhé

Đặt
x/5=y/4=k
khi đó:
x=5k
y=4k
Ta lại có:
x.y=4k.5k=20k^2=20
=> K=+-1
Khi k=1
Khi k=-1
Giải ra nhé
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!