
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Ta có:
n2 là số chính phương
Mà n khác 0
\(\Rightarrow\)Có 2 trường hợp:
TH1: n là số chẵn
Ví dụ: n = 2
\(\Rightarrow n^2+n+1=2^2+2+1=4+2+1=7\)
Mà 7 không có số nào mũ 2 bằng
\(\Rightarrow n^2+n+1\)là số lẻ và \(n^2+n+1\)không thể là số chính phương
TH2:
n là số lẻ
Ví dụ: n = 3
\(\Rightarrow n^2+n+1=3^2+3+1=9+3+1=13\)
Mà 13 không có số nào mũ 2 bằng cả
\(\Rightarrow n^2+n+1\)là số lẻ và không thể là số chính phương
Qua 2 trường hợp trên, ta kết luận: với n là số tự nhiên khác 0 thì \(n^2+n+1\)là số lẻ và không thể là số chính phương

Bài giải:
a) Gọi đường chéo của hình vuông có độ dài là a.
Ta có: a2 = 32 + 32 = 18
Suy ra a = √18
Vậy đường chéo của hình vuông đó bằng 3√2.
b) Gọi cạnh của hình vuông là a.
Ta có a2 + a2 + 22 =>2 a2 = 4 => a2 = 2 => a = √2
Vậy cạnh của hình vuông đó bằng √2
Ta có: a2 = 32 + 32 = 18
Suy ra a = √1818
Vậy đường chéo của hình vuông đó bằng 3√22.
b) Gọi cạnh của hình vuông là a.
Ta có a2 + a2 + 22 =>2 a2 = 4 => a2 = 2 => a = √22
Vậy cạnh của hình vuông đó bằng √22.
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
rất đỉnh