
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=1+3+3^2+...+3^{2016}\)
\(3A=3.\left(1+3+3^2+...+3^{2016}\right)\)
\(3A=3+3^2+3^3+...+3^{2017}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2017}\right)-\left(1+3+3^2+...+3^{2016}\right)\)
\(2A=3^{2017}-1\)
\(A=\left(3^{2017}-1\right):2\)
\(B=1+6+6^2+...+6^{200}\)
\(6B=6.\left(1+6+6^2+...+6^{200}\right)\)
\(6B=6+6^2+6^3+...+6^{201}\)
\(6B-B=\left(6+6^2+6^3+...+3^{201}\right)-\left(1+6+6^2+...+6^{200}\right)\)
\(5B=6^{201}-1\)
\(B=\left(6^{201}-1\right):5\)
\(3^{x-2}.4=324\)
\(3^{x-2}=324:4\)
\(3^{x-2}=81\)
\(3^{x-2}=3^4\)
\(x-2=4\)
\(x=4+2\)
\(x=6\)
\(2x< 20\)
\(\Rightarrow x=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)

Ta có :
\(10A=\dfrac{10\left(10^{1990}+1\right)}{10^{1991}+1}=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\left(1\right)\)
\(10B=\dfrac{10\left(10^{1991}+1\right)}{10^{1992}+1}=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\left(2\right)\)
Lại có : \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)
\(\Leftrightarrow10A>10B\Leftrightarrow A>B\)
Vậy...

Sửa đề:
So sánh:
\(A=\dfrac{10^{2015}+1}{10^{2016}+1}\) và \(B=\dfrac{10^{2016}+1}{10^{2017}+1}\)
Giải:
Ta thấy: \(\left\{{}\begin{matrix}A=\dfrac{10^{2015}+1}{10^{2016}+1}< 1\\B=\dfrac{10^{2016}+1}{10^{2017}+1}< 1\end{matrix}\right.\)
\(\Rightarrow\) Áp dụng tính chất \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có:
\(B=\dfrac{10^{2016}+1}{10^{2017}+1}< \dfrac{10^{2016}+1+9}{10^{2017}+1+9}=\dfrac{10^{2016}+10}{10^{2017}+10}\)
\(=\dfrac{10\left(10^{2015}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2015}+1}{10^{2016}+1}\)
\(\Rightarrow\dfrac{10^{2016}+1}{10^{2017}+1}< \dfrac{10^{2015}+1}{10^{2016}+1}\)
Vậy \(B< A\)
Hay \(A>B\)

\(16750< 73^{75}\)
Theo mk là như vậy còn cách làm thì mk ko biết
thông cảm
#sakurasyaoran#

Ta có \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
vÌ \(\frac{2}{20^{10}-3}>\frac{2}{20^{10}-1};1=1\Rightarrow1+\frac{2}{20^{10}-3}>1+\frac{2}{20^{10}-1}\Rightarrow A>B\)
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
rất đỉnh