
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

Bài 1:
a; A = \(x^2\) - 4\(x\) + 9
A = \(x^2\) - 4\(x\) + 4 + 5
A = (\(x-2\))\(^2\) + 5
Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\) ⇒ (\(x-2\))\(^2\) + 5 ≥ 5 dấu bằng xảy ra khi \(x-2=0\) ⇒ \(x=2\)
Vậy Amin = 5 khi \(x\) = 2
b; B = \(x^2\) - \(x+1\)
B = (\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14)+\frac34\)
B = (\(x-\frac12\))\(^2\) + \(\frac34\)
Vì (\(x-\frac12\))\(^2\) ≥ 0 ∀ \(x\); ⇒ (\(x-\frac12\))\(^2\) + \(\frac34\) ≥ \(\frac34\)
Dấu = xảy ra khi \(x-\frac12\)= 0 ⇒ \(x\) = \(\frac12\)
Vậy Bmin = \(\frac34\) khi \(x=\frac12\)
Bài 3:
a; A(\(x\)) = \(x^2\) - 4\(x\) + 24
A(\(x\)) = (\(x^2\) - 2.\(x.2\) + \(2^2\)) + 20
A(\(x\)) = (\(x-2\))\(^2\) + 20
Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\);
(\(x-2)^2\) + 20 ≥ 20 ∀ \(x\)
Dấu bằng xảy ra khi \(x-2=0\)
\(x=2\)
Vậy Amin = 20 khi \(x=2\)
b; B(\(x\)) = 2\(x^2\) - 8\(x\) + 1
B(\(x\)) = 2(\(x^2\) - 2.\(x.2\) + 2\(^2\)) - 7
B(\(x\)) = 2(\(x-2\))\(^2\) - 7
(\(x-2\))\(^2\) ≥ 0 ∀ \(x\);
2(\(x-2)^2\) - 7 ≥ -7 ∀ \(x\)
Dấu = xảy ra khi \(x-2\) = 0
\(x=2\)
Bmin = - 7 khi \(x=2\)
c; C(\(x\)) = \(3x^2+x+1\)
C(\(x\)) = 3.(\(x^2\) + \(2.x\).\(\frac16\) + \(\frac{1}{36}\)) + \(\frac{11}{12}\)
C(\(x\)) = 3.(\(x+\) \(\frac16\))\(^2\) + \(\frac{11}{12}\)
(\(x+\frac16\))\(^2\) ≥ 0; (\(x+\frac16\))\(^2\) + \(\frac{11}{12}\) ≥ \(\frac{11}{12}\)
Dấu = xảy ra khi \(x+\frac16=0\) ⇒\(x=-\) \(\frac16\)
Cmin = \(\frac{11}{12}\) khi \(x=-\frac16\)

Bài 7:
a: Xét tứ giác AECF có
D là trung điểm chung của AC và EF
=>AECF là hình bình hành
=>AE//CF và AE=CF
Ta có: AE//CF
=>CF//BE
ta có: AE=CF
AE=BE
Do đó: CF=BE
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
b: BEFC là hình bình hành
=>EF//BC
=>DK//BC
Xét tứ giác BDKC có
BD//KC
BC//DK
Do đó: BDKC là hình bình hành
Bài 9:
a: Ta có: BH⊥AC
CF⊥CA
Do đó: BH//CF
Ta có: CH⊥AB
BF⊥BA
Do đó: CH//BF
Xét tứ giác BHCF có
BH//CF
BF//CH
Do đó: BHCF là hình bình hành
b: Xét tứ giác ABFC có \(\hat{ABF}+\hat{ACF}+\hat{BAC}+\hat{BFC}=360^0\)
=>\(\hat{BAC}+\hat{BFC}=360^0-90^0-90^0=180^0\)

Bài 1:
a: \(A=x^2-4x+9\)
\(=x^2-4x+4+5\)
\(=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 2:
a: \(M=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(P=2x-2x^2-5\)
\(=-2\cdot\left(x^2-x+\frac52\right)\)
\(=-2\left(x^2-x+\frac14+\frac94\right)\)
\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 3:
a: \(A=x^2-4x+24\)
\(=x^2-4x+4+20\)
\(=\left(x-2\right)^2+20\ge20\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=2x^2-8x+1\)
\(=2\left(x^2-4x+\frac12\right)\)
\(=2\left(x^2-4x+4-\frac72\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
c: \(C=3x^2+x-1\)
\(=3\left(x^2+\frac13x-\frac13\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x+\frac16=0\)
=>\(x=-\frac16\)
Bài 4:
a: \(A=-5x^2-4x+1\)
\(=-5\left(x^2+\frac45x-\frac15\right)\)
\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)
\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)
Dấu '=' xảy ra khi \(x+\frac25=0\)
=>\(x=-\frac25\)
b: \(B=-3x^2+x+1\)
\(=-3\left(x^2-\frac13x-\frac13\right)\)
\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x-\frac16=0\)
=>\(x=\frac16\)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có
\(\hat{DBE}\) chung
Do đó: ΔBDE~ΔBCD
b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có
\(\hat{FBD}\) chung
Do đó: ΔBFD~ΔBDA
=>\(\frac{BF}{BD}=\frac{BD}{BA}\)
=>\(BD^2=BF\cdot BA\)
c: ΔBDE~ΔBCD
=>\(\frac{BD}{BC}=\frac{BE}{BD}\)
=>\(BD^2=BE\cdot BC\)
=>\(BE\cdot BC=BF\cdot BA\)
=>\(\frac{BE}{BA}=\frac{BF}{BC}\)
Xét ΔBEF và ΔBAC có
\(\frac{BE}{BA}=\frac{BF}{BC}\)
góc EBF chung
Do đó: ΔBEF~ΔBAC
=>\(\hat{BFE}=\hat{BCA}\)

Gọi I là trung điểm của DE
=>I là tâm đường tròn đường kính DE
ĐƯờng trung trực của BC cắt BC,AC,AB lần lượt tại M,D,E
=>MB=MC; EB=EC; DB=DC
MB=MC nên M la trung điểm của BC
ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB
=>ΔMAB cân tại M
=>\(\hat{MAB}=\hat{MBA}\)
ΔAED vuông tại A
mà AI là đường trung tuyến
nên IA=IE
=>ΔIAE cân tại I
=>\(\hat{IAE}=\hat{IEA}\)
mà \(\hat{IEA}=\hat{MEB}\) (hai góc đối đỉnh)
nên \(\hat{IAE}=\hat{MEB}\)
Ta có: DM là đường trung trực của BC
=>DM⊥BC tại M
Xét tứ giác AEMC có \(\hat{CAE}+\hat{CME}+\hat{ACM}+\hat{AEM}=360^0\)
=>\(\hat{ACM}+\hat{AEM}=360^0-90^0-90^0=180^0\)
mà \(\hat{AEM}+\hat{BEM}=180^0\) (hai góc kề bù)
nên \(\hat{BEM}=\hat{ACB}\)
\(\hat{MAI}=\hat{MAE}+\hat{IAE}=\hat{MAB}+\hat{MEB}\)
\(=\hat{MBA}+\hat{MCA}=90^0\)
=>AM⊥IA tại A
ΔAED vuông tại A
mà AI là đường trung tuyến
nên IA=IE=ID
=>A nằm trên (I)
Xét (I) có
IA là bán kính
AM⊥ AI tại A
Do đó: AM là tiếp tuyến tại A của (I)
=>AM là tiếp tuyến của đường tròn đường kính DE

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)
nên APMQ là hình chữ nhật
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!