K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 giờ trước (14:13)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

\(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(3x-2\right)\)

Đề sai rồi bạn phải + 2 chứ

31 tháng 10 2016

Ta có

\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)

Lấy dưới trừ trên vế theo vế ta được

(x + y)2 - 2(x + y) = 215

\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)

Ta lại có

31 tháng 10 2016

Ta lại có 

x3 - y3 = (x - y)(x2 + xy + y2) = 

\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)

Giờ chỉ việc thế số vô là có đáp án nhé

\(P=\dfrac{x^3+8y^3}{4^3+4^3}=\dfrac{\left(x+2y\right)^3-3\cdot x\cdot2y\cdot\left(x+2y\right)}{128}\)

\(=\dfrac{\left(-8\right)^3-6\cdot\left(-6\right)\cdot\left(-8\right)}{128}=\dfrac{128-6\cdot48}{128}=-\dfrac{5}{4}\)

13 tháng 9 2020

Dung à mày (:

Ta có \(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x+1\right)\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{b\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x+1\right)^2}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x^2+3x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{bx+2b}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{ax^2+3ax+2a+bx+2b+cx^2+2cx+c}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Rightarrow1=x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)\)

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}a+c=0\\3a+b+2c=0\\2a+2b+c=1\end{cases}}\)=> Chịu :)) Khó quá không làm được ... Hoặc do đề sai ;-;

13 tháng 9 2020

Không sai == Trong sách Nâng cao và phát triển toán 8 tập 1 trang 33 bài 123 ý c

T cũng chịu '-'

13 tháng 10 2020

Vì a, b, c > 0 

=> a/b > 0 ; b/c > 0 ; c/a > 0

Áp dụng bđt Cauchy cho :

  • Bộ số a/b, 1 ta được : 

\(\frac{a}{b}+1\ge2\sqrt{\frac{a}{b}\cdot1}=2\sqrt{\frac{a}{b}}\)(1)

  • Bộ số b/c, 1

\(\frac{b}{c}+1\ge2\sqrt{\frac{b}{c}\cdot1}=2\sqrt{\frac{b}{c}}\)(2)

  • Bộ số c/a, 1

\(\frac{c}{a}+1\ge2\sqrt{\frac{c}{a}\cdot1}=2\sqrt{\frac{c}{a}}\)(3)

Nhân (1), (2) và (3) theo vế

=> \(\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\ge2\sqrt{\frac{a}{b}}\cdot2\sqrt{\frac{b}{c}}\cdot2\sqrt{\frac{c}{a}}=8\sqrt{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=8\sqrt{\frac{abc}{abc}}=1\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c

13 tháng 10 2020

à nhầm tí :v \(8\sqrt{\frac{abc}{abc}}=8\cdot1=8\)nhé ._.

3:

a: Xét ΔABC có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

=>E là trung điểm của AC

b: Xét ΔCAB có CE/CA=CM/CB=1/2

nên ME//AB

=>ME/AB=CE/CA=1/2

=>ME=DB

Xét tứ giác BMED có

ME//DB

ME=DB

=>BMED là hình bình hành

c: EM=AB/2

mà EM=EN/2

nên AB=EN

Xét tứ giác AENB có

NE//AB

NE=AB

góc EAB=90 độ

Do đó: AENB là hình chữ nhật

góc EKB=góc EAB=góc ENB=90 độ

=>E,A,B,N,K cùng thuộc đường tròn đường kính EB

=>K nằm trên đường tròn đường kính AN

=>KA vuông góc KN