K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEH+góc ADH=180 độ

=>AEHD nội tiêp

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc ABI=góc ACK(=90 độ-góc BAC)

góc ABI=1/2*sđ cung AI

góc ACK=1/2*sđ cung AK

=>sđ cung AI=sđ cung AK

=>AI=AK

24 tháng 3 2022

Ngu thế dễ mà cũng ko làm được

 

4 tháng 3 2021

Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.

a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.

b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.

Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.

Vậy ta có đpcm.

c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.

Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.

Khi đó FH . FN = FE . FD = FB . FC.

Suy ra tứ giác BHNC nội tiếp.

Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).

Do đó tứ giác DNMC nội tiếp.

Tương tự tứ giác ENMB nội tiếp.

Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.

Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).

(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).

4 tháng 3 2021

Hình vẽ: undefined

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}.

Suy ra 4 điểm B,E, D, C cùng thuộc đường tròn đường kính CB nên tứ giác BCDE nội tiếp.

Có tứ giác BCDE nội tiếp nên \widehat{DCE} = \widehat{DBE} (2 góc nội tiếp cùng chắn cung DE) hay \widehat{ACQ} = \widehat{ABP}.

Trong đường tròn tâm (O), ta có \widehat{ACQ} là góc nội tiếp chắn cung AQ và \widehat{ABP} nội tiếp chắn cung AP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}.

2.

(O) có \overset{\frown}{AQ}=\overset{\frown}{AP} nên \widehat{ABP} = \widehat{ABQ} hay \widehat{HBE} = \widehat{QBE}.

Ta chứng minh được BE vừa là đường cao, vừa là phân giác của tam giác HBQ nên E là trung điểm của HQ.

Chứng minh tương tự D là trung điểm của HP \Rightarrow DE là đường trung bình của tam giác HPQ \Rightarrow DE // PQ (1).

Do \overset{\frown}{AQ}=\overset{\frown}{AP} nên A là điểm chính giữa cung PQ \Rightarrow OA \perp PQ (2).

Từ (1) và (2) suy ra OA \perp DE.

3.

Kẻ đường kính CF của đường tròn tâm (O), chứng minh tứ giác ADHE nội tiếp đường tròn đường kính AH.

Chứng minh tứ giác AFBH là hình bình hành, suy ra BF=AH.

Trong đường tròn (O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ} (2 góc nội tiếp cùng chắn cung BC). Chỉ ra tam giác BCF vuông tại B và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6 cm.

Đường tròn ngoại tiếp tứ giác ADHE cũng là đường tròn ngoại tiếp tam giác ADE.

Gọi r là bán kính đường tròn ngoại tiếp tam giác ADE.

Suy ra 2r=AH=BF=6 cm.

Vậy r=3 cm.

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiêp

b: góc ABM=góc ACN

=>sđ cung AM=sđ cung AN=2*30=60 độ

=>AM=AN

c: OM=ON

AM=AN

=>OA là trung trực của MN

=>OA vuông góc MN

d: Kẻ đường kính AD

Xét ΔACD vuông tại C và ΔAKB vuông tại K có

góc ADC=góc ABK

=>ΔACD đồng dạng với ΔAKB

=>AC/AK=AD/AB

=>AK*2*R=AB*AC

AH
Akai Haruma
Giáo viên
24 tháng 3 2018

Lời giải:

a) Do $BD, CE$ là đường cao tg $ABC$ nên \(CE\perp AB, BD\perp AC\)

\(\Rightarrow \widehat{AEH}=\widehat{ADH}=\widehat{BEC}=\widehat{BDC}=90^0\)

Xét tứ giác $ADHE$ có hai góc đối \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\) nên là tứ giác nội tiếp.

Xét tứ giác $BCDE$ có hai góc cùng nhìn một cạnh $BC$ là \(\widehat{BEC}=\widehat{BDC}\) nên là tứ giác nội tiếp.

Ta có đpcm.

b)

Vì tứ giác $BCDE$ nội tiếp nên \(\widehat{ECB}=\widehat{EDB}\)

Mà \(\widehat{ECB}=\widehat{NMB}\) (góc nội tiếp cùng nhìn cung BN)

\(\Rightarrow \widehat{EDB}=\widehat{NMB}\)

Mà hai góc này ở vị trí đồng vị nên \(DE\parallel MN\)