Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(m=2\)
\(pt\Leftrightarrow-4x+5=0\Leftrightarrow x=\dfrac{5}{4}\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
TH2: \(m\ne2\)
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-m>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)
Vậy \(m\in\left(-\infty;-3\right)\cup\left(2;6\right)\)
PT có 2 nghiệm phân biệt
\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\)
\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)
Vậy PT luôn có 2 nghiệm phân biệt
Theo hệ thức Viét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Mà theo GT thì ta có:
\(x_1^2+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)
\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)
\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)
\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)
\(\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)
Pt trùng phương chỉ có các trường hợp
- Vô nghiệm
- Có 2 nghiệm phân biệt
- Có 4 nghiệm phân biệt
- Có 2 nghiệm kép
- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))
Không tồn tại trường hợp có 3 nghiệm pb
\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)
Đặt \(t=x^2\), pt trở thành:
\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)
Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0
\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)
Vậy \(m=\dfrac{1}{2}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-4mx-4=0\left(1\right)\end{matrix}\right.\)
để pt có 3 nghiệm pb thì pt(1) phải có 2 nghiệm pb khác 1
+)xét th pt(1) có 1 nghiệm bằng 1
khi đó ta có \(1-4m-4=0\Leftrightarrow m=\dfrac{-3}{4}\)
suy ra để pt(1) phải có 2 nghiệm pb khác 1 thì \(m\ne\dfrac{-3}{4}\)
+)để pt(1) có 2 nghiệm pb thì ac<0\(\Leftrightarrow-4< 0\) (luôn đúng với mọi m)
vậy để pt có 3 nghiệm pb thì \(m\ne\dfrac{-3}{4}\)
Trường hợp 1: m=0
=>-3<0(luôn đúng)
=>Nhận
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)
Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)
Vậy: -3<m<=0
Lời giải:
Để phương trình trên có hai nghiệm \(x_1,x_2\) thì trước tiên \(m\neq 0\)
\(\Delta'=1-2m>0\Leftrightarrow m<\frac{1}{2}\)
Áp dụng định lý Viete: \(x_1+x_2=\dfrac{2}{m}\). Mặt khác \(x_1+x_2=2m(m+1)\)
\(\Rightarrow \frac{2}{m}=2m(m+1)\Leftrightarrow m^3+m^2-1=0\) $(1)$
Giải PT trên, ta thấy nếu \(m\) là nghiệm $(1)$ thì \(m>\frac{1}{2}\), do đó không tồn tại $m$ thỏa mãn.
\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)
(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)
TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)
\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)
TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)
Thế vào \(x_2x_3=-m-2\)
\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)
\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)
Vậy \(m=0\)
e cam on , vay em lam dung roi :^^