Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2C=1-\frac{1}{3^{99}}\)
\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)
b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{397}{3^{100}}\)
\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1
tương tự nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)
Ta có :
M = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3M = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3M - M = ( \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)) - ( \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\))
2M = \(1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow M=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
3M=1+1/3+1/3^2+....+1/3^98
2M=3M-M=(1+1/3+1/3^2+....+1/3^98)-(1/3+1/3^2+....+1/3^99) = 1-1/3^99 < 1
=> M < 1/2
=> ĐPCM
k mk nha
3C = 1+1/3+1/3^2+....+1/3^98
2C = 3C - C = (1+1/3+1/3^2+...+1/3^98) - (1/3+1/3^2+1/3^3+...+1/3^99) = 1- 1/3^99 < 1
=> C < 1/2
k mk nha
Đặt :
\(A=\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)
\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)
\(\Leftrightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)
\(\Leftrightarrow2A=1-\frac{1}{3^{99}}< 1\)
\(\Leftrightarrow A< \frac{1}{2}\left(đpcm\right)\)
Đặt \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}< 1\)
=> C = (1 - 1/399)/2 < 1/2
Vậy 1/3 + 1/32 + 1/33 + ....+ 1/399 < 1/2
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)
\(2C=3C-C=1-\frac{1}{3^{99}}\Rightarrow C=\left(1-\frac{1}{3^{99}}\right):2=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3C-C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{99}}\)
\(2C=1-\frac{1}{3^{99}}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3^{99}}\right)\)
\(C=\frac{1}{2}-\frac{1}{3^{99}}< \frac{1}{2}\)
À bạn ơi bạn sửa \(\frac{1}{3^{99}}\) ở dòng cuối thành \(\frac{1}{2.3^{99}}\) nhé.