Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) Vì 11 là số nguyên tố
=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Không mất tính tổng quát. G/S: \(16a+17b⋮11\). (1)
Chúng ta chứng minh: \(17a+16b⋮11\)
Vì \(16a+17b⋮11\)
=> \(2\left(16a+17b\right)⋮11\)
=> \(32a+34b⋮11\)
=> \(\left(33a+33b\right)-\left(a-b\right)⋮11\)
Vì \(33a+33b=11\left(3a+3b\right)⋮11\)
=> \(\left(a-b\right)⋮11\)
=> \(\left(33a+33b\right)+\left(a-b\right)⋮11\)
=> \(34a+32b⋮11\)
=> \(2\left(17a+16b\right)⋮11\) mà 2 không chia hết cho 11
=> \(17a+16b⋮11\) (2)
Từ (1) và (2) => \(\left(17a+16b\right)\left(16a+17b\right)⋮\left(11.11\right)\)
=> \(\left(17a+16b\right)\left(16a+17b\right)⋮121\)
Cách khác:
Có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) ( vì 11 là số nguyên tố)
=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
G/s: \(16a+17b⋮11\)(1)
Mà \(\left(16a+17b\right)+\left(17a+16b\right)=\left(33a+33b\right)=11\left(3a+3b\right)⋮11\)
=> \(17a+16b⋮11\)(2)
Từ (1); (2) => \(\left(16a+17b\right)\left(17a+16b\right)⋮121\)
Câu 1:
A=a^3-13a=a^3-a-12a
=a(a-1)(a+1)-12a
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
mà 12a chia hết cho 6
nên A chia hết cho 6
a) Ta có: \(34^{2005}-34^{2004}\)
\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)
b) Ta có: \(43^{2004}+43^{2005}\)
\(=43^{2004}\left(1+43\right)\)
\(=43^{2004}\cdot44⋮11\)
c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)
tham khảo thôi nhé ko giống y sì đâu
https://olm.vn/hoi-dap/detail/213882782299.html
\(14a-7b+4=7\left(2a-b+1\right)-3⋮7̸\)\(\Rightarrow4a+2b+1⋮7\Leftrightarrow4a+21a+2b-14b+1+7⋮7\Leftrightarrow25a-12b+8⋮7\)
\(14a-7b+4=7\times\left(2a-b\right)+4⋮̸7\)
\(\left(14a-7b+4\right)\left(4a+2b+1\right)⋮7\)
\(\Rightarrow4a+2b+1⋮7\)
\(21a-14b+7⋮7\)
\(\Rightarrow\left(4a+2b+1\right)+\left(21a-14b+7\right)⋮7\)
\(\Rightarrow\left(4a+21a\right)-\left(14b-2b\right)+\left(1+7\right)⋮7\)
\(\Rightarrow25a-12b+8⋮7\)
Ta chứng minh: 4a chia 6 dư 4(1)
-Với a=1=>4a =41=4 chia 6 dư 4(thỏa mãn)
Giả sử (1) luôn đúng với mọi n=k=>4k chia 6 dư 4, ta càn chứng minh (1) cũng luôn đúng với mọi n=k+1, chứng minh: : 4k+1 chia 6 dư 4
Ta có: 4k chia 6 dư 4
=>4k đồng dư với 4(mod 6)
=>4k.4 đồng dư với 4.4(mod 6)
=>4k+1 đồng dư với 16(mod 6)
=>4k+1 đồng dư với 4(mod 6)
=>4k+1 chia 6 dư 4
=>thỏa mãn
=>Phép quy nạp đã được chứng minh=>ĐPCM
=>4a chia 6 dư 4
=>4a-4 chia hết cho 6
Lại có: a+1, b+2007 chia hết cho 6
=>a+1+ b+2007 chia hết cho 6
=>a+ b+2008 chia hết cho 6
=>a+b+4+2004 chia hết cho 6
mà 2004 chia hết cho 6
=>a+ b+4 chia hết cho 6
mà 4a-4 chia hết cho 6
=>4a-4+a+b+4 chia hết cho 6
=>4a+a+b chia hết cho 6
Vậy 4a+a+b chia hết cho 6
Do a+1 và b+2007chia hết cho 6. Do đó a,b:lẻ. Thật vậy nếu a,b chẵn
\(\Rightarrow\) a+1,b+2007/chia hết cho 2
\(\Rightarrow\)a+1,b+2007/chia hết cho 6
Điều nói trên trái với giả thiết.
Vậy a,b luôn lẻ.
Do đó:41+MỘTchia hết+2.b
Ta có:một + 1,b+chia hết 2007
\(\Rightarrow\)a+1+b+2007 chia hết cho 6
\(\Rightarrow\)(một +b+1)chia hết+3.2007
\(\Rightarrow\)a+b+1chia hết cho 3.\(\leftrightarrow\)
Ta thấy41+Một+b=(41-1)+(một +b+1)
Lại có:41-1chia hết (4-1)=3\(\leftrightarrow\)(*)
Từ\(\leftrightarrow\)và(*),Suy ra:41+Một +b chia hết+3
Mặt khác(2;3)=1. Do đó: 41+Một+b chia hết cho 6