Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito
bài 1 :
a, A = 3|2x - 1| - 5 = 0
có 3|2x - 1| > 0
=> A > -5
xét A = -5 khi
|2x - 1| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
vậy Min A = -5 khi x = 1/2
b, c, d, làm tương tự
Bài 1:
\(a)A=3|2x-1|-5\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)
\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)
\(b)x^2+3|y-2|-1\)
Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)
\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)
\(c)\left(2x^2+1\right)^4-3\)
Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x^2+1=0\)
\(\Leftrightarrow2x^2=-1\)
\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Vậy không tìm được gt x
\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)
Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)
Bài 2:
\(a)A=10-5|x-2|\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow5|x-2|\ge0\)\(\forall x\)
\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_A=10\Leftrightarrow x=2\)
\(b)B=5-|2x-1|^2\)
Vì \(|2x-1|^2\ge0\)\(\forall x\)
\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)
\(c)C=\frac{1}{|x-2|+3}\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)
\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)
Ta có:
\(\left(\frac{3}{5}-x\right).\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\frac{3}{5}-x>0\)và \(\frac{2}{5}-x>0\)
\(\Rightarrow x>\frac{3}{5}\)và \(x>\frac{2}{5}\)
MÌNH NGHĨ VẬY, NHỚ KICK ĐÚNG CHO MÌNH NHA.......( ^ _ ^ )
\(\left(\frac{3}{5}-x\right)\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{3}{5}-x>0\\\frac{2}{5}-x>0\end{cases}}\\\orbr{\begin{cases}\frac{3}{5}-x< 0\\\frac{3}{5}-x< 0\end{cases}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}x< \frac{3}{5}\\x< \frac{2}{5}\end{cases}}\\\orbr{\begin{cases}x>\frac{3}{5}\\x>\frac{3}{5}\end{cases}}\end{cases}}\)
nếu x - 5/6 > 0 => |x - 5/6 | = x - 5/6
=> x- 5/6 = 2x + 1
=> -1 - 5/6 = 2x - x
=> x = - 11/6 ( loại ) vì x-5/6<0
nếu x - 5/6 < 0 => | x - 5/6 | = 5/6 - x
=> 5/6 - x = 2 x + 1
=> 5/6 - 1 = 2x + x
=> -1/6 = 3x
=> x = -1/18 ( t/m)
vậy x = -1/18
a không có tích để tìm x.
b)\(\frac{1}{12}.x-75\%.x=-1\frac{2}{3}\)
\(x.\left(\frac{1}{12}-\frac{9}{12}\right)=\frac{-1}{3}\)
\(x.\frac{-2}{3}=\frac{-1}{3}\)
\(x=\frac{-1}{3}:\frac{-2}{3}\)
\(x=\frac{-1}{-2}\)
c)\(\left(\frac{-2x}{5}+1\right):-5=\frac{-1}{25}\)
\(\left(\frac{5-2x}{5}\right)=\frac{-1}{25}.\frac{1}{-5}\)
\(\left(\frac{5-2x}{5}\right)=\frac{-1}{-125}\)
\(\frac{2x}{5}=\frac{-1}{-125}-1\)
\(\frac{2x}{5}=\frac{-126}{-125}\)
\(\frac{x.2}{5}=\frac{-126}{-125}\)
\(x=-63\)
Mới cuối cấp I thôi chị ơi.
ngày mai ko nghỉ hả
thues hai tớ đi học thêm