Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2/143+2/195+2/255+2/323+2/399).462-y=19
=> 10/231.462-y=19
=> 20-y=19
=> y= 20-19=1
DUYỆT NHA "T I C K"
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
=\(2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
=\(2\left(1-\frac{1}{21}\right)\)
=\(\frac{2.20}{21}=\frac{40}{21}\)
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)
\(=\frac{99.5}{486}\)
\(=\frac{495}{486}\)
Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)
\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)
\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)
\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)
\(A=66.\frac{13}{27}\)
\(A=\frac{286}{9}\)
sai hay đúng cx ko biết nha
gạch tất cả số 5, 9, 13
là bằng 4.x/1 + 4.x/17
rồi gợi ý thế thôi nhé
\(\frac{4.x}{1.5}+\frac{4.x}{5.9}+\frac{4.x}{9.13}+\frac{4.x}{13.17}=16\)
\(x.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}\right)=16\)
\(x.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\right)=16\)
\(x.\left(1-\frac{1}{17}\right)=16\)
\(x.\frac{16}{17}=16\Rightarrow x=16:\frac{16}{17}=16.\frac{17}{16}\)
\(\Rightarrow x=17\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{11}{11}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Chúc bạn học tốt !!!
Bước 1: \(\left(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{19\times21}\right)=\frac{1}{7}\)
Bước 2: \(x=\frac{9}{7}\div\frac{1}{7}=9\)
\(C=\frac{2}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)