\(C=\dfrac{2x^2-4x+8}{x^3+8}\)

a) x bằng mấy để C = 0; C > 0; C < 0; có nghĩa...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để C vô nghĩa thì x+2=0

hay x=-2

Để C có nghĩa thì x+2<>0

hay x<>-2

\(C=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{2}{x+2}\)

Để C=0 thì \(x\in\varnothing\)

Để C>0 thì x+2>0

hay x>-2

Để C<0 thì x+2<0

hay x<-2

b: \(C=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{2}{x+2}\)

9 tháng 8 2017

a. A=(3x-2)(3x+2)/(2x-1)(2x+1)+(2x+1)(x-1)=(3x-2)(3x+2)/(2x+1)(3x-2)=3x+2/2x+1

b. A>0

=>3x+2 lớn hơn hoặc bằng 2x+1

=>x lớn hơn hoặc bằng -1

c. Để A thuộc z thì 3x+2 chia hết cho 2x+1

=>x = -1/2

      = 1+ x+1/2x+1 = 1+ 2x+1-x/2x+1=1+ 2x+1/2x+1 -x/2x+1

24 tháng 6 2017

\(M=\dfrac{13x^2-x^4-36}{x^3-5x^2+6x}\)

\(=\dfrac{-x^4+13x^2-36}{x\left(x^2-5x+6\right)}\)

\(=\dfrac{-x^4+9x^2+4x^2-36}{x\left(x^2-2x-3x+6\right)}\)

\(=\dfrac{-x^2\left(x^2-9\right)+4\left(x^2-9\right)}{x\cdot\left[x\left(x-2\right)-3\left(x-2\right)\right]}\)

\(=\dfrac{\left(-x^2+4\right)\left(x^2-9\right)}{x\left(x-3\right)\left(x-2\right)}\)

\(=\dfrac{\left(4-x^2\right)\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x-2\right)}\)

\(=\dfrac{\left(2-x\right)\left(2+x\right)\left(x+3\right)}{x\left(x-2\right)}\)

\(=\dfrac{-\left(x-2\right)\left(2+x\right)\left(x+3\right)}{x\left(x-2\right)}\)

\(=\dfrac{-\left(2+x\right)\left(x+3\right)}{x}\)

\(=\dfrac{-\left(2x+6+x^2+3x\right)}{x}\)

\(=\dfrac{-\left(5x+6+x^2\right)}{x}\)

\(=-\dfrac{5x+6+x^2}{x}\)

24 tháng 6 2017

giúp mk câu b, c vs

18 tháng 8 2017

\(=\left[\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(x-4\right)\left(2x-5\right)}\right].\dfrac{2x\left(2x+3\right)-\left(2x+3\right)}{-2x\left(4x-7\right)-3\left(4x-7\right)}+1\)

\(=\left[\dfrac{2x-3-6x+15-4x+2}{\left(2x-5\right)}\right].\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)

\(=\dfrac{-2\left(4x-7\right)}{2x-5}.\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)

\(=\dfrac{1}{2x-5}.2+1\)

\(=\dfrac{2+2x-5}{2x-5}\)

\(=\dfrac{-3+2x}{2x-5}\)

25 tháng 3 2017

Bải 3a

\(\dfrac{-a+b+c}{2a}+\dfrac{-b+c+a}{2b}+\dfrac{-c+a+b}{2c}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{-a}{2a}+\dfrac{b+c}{2a}+\dfrac{-b}{2b}+\dfrac{c+a}{2b}+\dfrac{-c}{2c}+\dfrac{a+b}{2c}\ge\dfrac{3}{2}\)

\(\Leftrightarrow-\dfrac{3}{2}+\dfrac{b+c}{2a}+\dfrac{c+a}{2b}+\dfrac{a+b}{2c}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{b+c}{2a}+\dfrac{c+a}{2b}+\dfrac{a+b}{2c}\ge3\)

\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\ge6\)

\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\\\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{ca}{ac}}=2\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2+2+2=6\)

\(\Leftrightarrow\dfrac{-a+b+c}{2a}+\dfrac{-b+c+a}{2b}+\dfrac{-c+a+b}{2c}\ge\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

Bài 3b)

\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)

\(P=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\)( 1 )

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow\)\(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c\)

25 tháng 3 2017

Bài 2:

a) \(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)

\(\Rightarrow\left(\dfrac{x-17}{33}-1\right)+\left(\dfrac{x-21}{29}-1\right)+\left(\dfrac{x}{25}-2\right)=0\)

\(\Rightarrow\dfrac{x-50}{33}+\dfrac{x-50}{29}+\dfrac{x-50}{25}=0\)

\(\Rightarrow\left(x-50\right)\left(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{25}\right)=0\)

\(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{25}\ne0\)

\(\Rightarrow x-50=0\)

\(\Rightarrow x=50\)

Vậy x = 50

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)

a: \(N=\left(\dfrac{\left(1-a\right)\left(a^2+a+1\right)}{1-a}-a\right)\cdot\dfrac{a^3-a^2-a+1}{-\left(a^2-1\right)}\)

\(=\left(a^2+1\right)\cdot\dfrac{a^2\left(a-1\right)-\left(a-1\right)}{-\left(a-1\right)\left(a+1\right)}\)

\(=-\left(a^2+1\right)\cdot\dfrac{\left(a-1\right)\left(a^2-1\right)}{\left(a-1\right)\left(a+1\right)}\)

\(=-\left(a^2+1\right)\cdot\left(a-1\right)\)

b: Để N<0 thì \(-\left(a^2+1\right)\left(a-1\right)< 0\)

\(\Leftrightarrow\left(a^2+1\right)\left(a-1\right)>0\)

=>a-1>0

hay a>1