Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người thật là nhẫn tâm
chẳng ai giúp mk
TRỜI ƠI!!! AI MS LÀ BN BÈ THỰC SỰ
Ko cs đứa mô trả lời chứ chi
Loại bn bè vs mấy ng chỉ là giả tạo thôi
a) Ta có:
\(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+eg=9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)\(9999.\overline{ab}⋮11\)
\(99.\overline{cd}⋮11\)
\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)hay \(\overline{abcdeg}⋮11\)(đpcm)
b) Ta có:
\(E=92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...\left(1-\dfrac{92}{100}\right)=\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{100}=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)\(F=\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)
\(\dfrac{E}{F}=\dfrac{8\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}=\dfrac{8}{\dfrac{1}{5}}=40\)
Cái này mk từng làm nhưng có chút sai sót vậy nên bn sữa cho mk chút nhé ! Thay vì N = ... thì bn thay bằng A = ... nha
Ta có :
N = 40 ( A = 40 )
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
\(a)\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)
\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{6}{12}\right)\)
\(=\left(\dfrac{153}{54}+\dfrac{78}{54}\right):\left(1\dfrac{-5}{12}\right)\)
\(=\dfrac{231}{54}:\dfrac{7}{12}\)
\(=\dfrac{198}{27}\)
\(b)\dfrac{0,8\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)
\(=\dfrac{0,8\left(0,8:1,25\right)}{0,64-0,04}\)
\(=\dfrac{0,8.0,64}{0,6}\)
\(=\dfrac{0,512}{0,6}\)\(=\dfrac{64}{75}\)
1. Tính nhanh:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}\)
\(=\dfrac{3}{8}\)
2. Tính nhanh
Đặt \(A\) = \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A\) \(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{13}\)
\(2A=\dfrac{10}{39}\)
\(A=\dfrac{10}{39}:2\)
\(A=\dfrac{5}{39}\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
a: \(=\dfrac{4\cdot2+4\cdot9}{55}+\dfrac{5}{6}=\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{49}{30}\)
b: \(=\dfrac{3}{2}\cdot\dfrac{3}{5}-\left(\dfrac{3}{7}+\dfrac{3}{20}\right)\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{81}{140}\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{27}{14}=\dfrac{-36}{35}\)
c: \(=15+\dfrac{3}{13}-3-\dfrac{4}{7}-8-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
d: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=5\)
+)Đặt A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\left(1+1+1+...+1\right)\) (99 chữ số 1)
A= \(\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
A= \(\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+1\)
A= \(100.\left(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
⇒ M= \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
M= \(\dfrac{100.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
M= 100 (1)
+) Đặt B= \(92-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\)
B= \(\left(1+1+1+...+1\right)-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\) ( 92 chữ số 1)
B= \(\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
B= \(\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
B= \(8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
⇒ N= \(\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)
N= 8 (2)
Từ (1) và (2)⇒ \(\dfrac{M}{N}\) = \(\dfrac{100}{8}\)= \(\dfrac{25}{2}\)
Vậy \(\dfrac{M}{N}=\dfrac{25}{2}\)
các bạn biết câu nào thì trả lời câu ấy
\(C=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\)
\(C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\)
\(C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\)
\(C=\dfrac{1}{3}-\dfrac{1}{21}\)
\(C=\dfrac{2}{7}\)